DOI QR코드

DOI QR Code

기계학습 기반 강 구조물 지진응답 예측기법

Machine Learning based Seismic Response Prediction Methods for Steel Frame Structures

  • 이승혜 (딥러닝 건축연구소, 세종대학교 건축공학과) ;
  • 이재홍 (딥러닝 건축연구소, 세종대학교 건축공학과)
  • Lee, Seunghye (Deep Learning Architecture Research Center, Dept. of Architectural Engineering, Sejong University) ;
  • Lee, Jaehong (Deep Learning Architecture Research Center, Dept. of Architectural Engineering, Sejong University)
  • 투고 : 2024.05.28
  • 심사 : 2024.06.04
  • 발행 : 2024.06.15

초록

In this paper, machine learning models were applied to predict the seismic response of steel frame structures. Both geometric and material nonlinearities were considered in the structural analysis, and nonlinear inelastic dynamic analysis was performed. The ground acceleration response of the El Centro earthquake was applied to obtain the displacement of the top floor, which was used as the dataset for the machine learning methods. Learning was performed using two methods: Decision Tree and Random Forest, and their efficiency was demonstrated through application to 2-story and 6-story 3-D steel frame structure examples.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2023R1A2C2003310).

참고문헌

  1. Yun, S., Hamm, S., Jeon, H., and Cheong, J., "Trend Analysis of Earthquake Researches in the World", Journal of the Korean earth science society Vol.42, No.1 pp.76-87, 2021 https://doi.org/10.5467/JKESS.2021.42.1.76
  2. https://www.isc.ac.uk/iscgem/index.php
  3. Won, J., and Shin, J., "Development of Artificial Neural Network Model for Prediction of Seismic Response of Building with Soil-structure Interactio", JOURNAL OF THE KOREAN GEOTECHNICAL SOCIETY, Vol.36, No.8, pp. 7-15, 2020 DOI:https://doi.org/10.7843/kgs.2020.36.8.7
  4. Lagaros, N. D., & Papadrakakis, M. (2012). Neural network based prediction schemes of the non-linear seismic response of 3D buildings. Advances in Engineering Software, 44(1), 92-115. DOI:https://doi.org/10.1016/j.advengsoft.2011.05.033
  5. Zhang, R., Chen, Z., Chen, S., Zheng, J., Buyukozturk, O., & Sun, H. (2019). Deep long short-term memory networks for nonlinear structural seismic response prediction. Computers & Structures, 220, 55-68. DOI:https://doi.org/10.1016/j.compstruc.2019.05.006
  6. Ning, C., Xie, Y., & Sun, L. (2023). LSTM, WaveNet, and 2D CNN for nonlinear time history prediction of seismic responses. Engineering Structures, 286, 116083. DOI:https://doi.org/10.1016/j.engstruct.2023.116083
  7. Zhang, R., Liu, Y., & Sun, H. (2020). Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling. Engineering Structures, 215, 110704. DOI:https://doi.org/10.1016/j.engstruct.2020.110704
  8. Pacific Earthquake Engineering Research Center (PEER). (1940). "Imperial Valley (El Centro) Earthquake Record." PEER Ground Motion Database. Retrieved from https://ngawest2.berkeley.edu/
  9. Quinlan, J. R.. "Induction of decision trees", Machine Learning, 1(1), p.p. 81-106, 1986
  10. Breiman, L., "Random Forests", Machine Learning, 45(1), p.p. 5-32, 2001
  11. Thai, H. T., & Kim, S. E., "Practical advanced analysis software for nonlinear inelastic analysis of space steel structures", Advances in Engineering Software, 40(9), p.p. 786-797, 2009 https://doi.org/10.1016/j.advengsoft.2009.02.001
  12. Housner, G. W. (1960). Limit Design of Structures. Journal of the Engineering Mechanics Division, ASCE, 86(EM4), 107-132.
  13. Chen, W. F., & Lui, E. M. (1987). Structural stability: theory and implementation. (No Title).
  14. Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of the engineering mechanics division, 85(3), 67-94.
  15. Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1-15). Springer, Berlin, Heidelberg.
  16. https://scikit-learn.org/stable/