DOI QR코드

DOI QR Code

Fabrication of Phase Plate to Simulate Turbulence Effects on an Optical Imaging System in Strong Atmospheric Conditions

  • Han-Gyol Oh (Korea Research Institute of Standards and Science) ;
  • Pilseong Kang (Korea Research Institute of Standards and Science) ;
  • Jaehyun Lee (Korea Research Institute of Standards and Science) ;
  • Hyug-Gyo Rhee (Korea Research Institute of Standards and Science) ;
  • Young-Sik Ghim (Korea Research Institute of Standards and Science) ;
  • Jun Ho Lee (Department of Optical Engineering, Kongju National University)
  • Received : 2024.02.27
  • Accepted : 2024.04.16
  • Published : 2024.06.25

Abstract

Optical imaging systems that operate through atmospheric pathways often suffer from image degradation, mainly caused by the distortion of light waves due to turbulence in the atmosphere. Adaptive optics technology can be used to correct the image distortion caused by atmospheric disturbances. However, there are challenges in conducting experiments with strong atmospheric conditions. An optical phase plate (OPP) is a device that can simulate real atmospheric conditions in a lab setting. We suggest a novel two-step process to fabricate an OPP capable of simulating the effects of atmospheric turbulence. The proposed fabrication method simplifies the process by eliminating additional activities such as phase-screen design and phase simulation. This enables an efficient and economical fabrication of the OPP. We conducted our analysis using the statistical fluctuations of the refractive index and applied modal expansion using Kolmogorov's theory. The experiment aims to fabricate an OPP with parameters D/r0 ≈ 30 and r0 ≈ 5 cm. The objective is defined with the strong atmospheric conditions. Finally, we have fabricated an OPP that satisfied the desired objectives. The OPP closely simulate turbulence to real atmospheric conditions.

Keywords

References

  1. M. Chen, C. Liu, and H. Xian, "Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics," Appl. Opt. 54, 8722-8726 (2015).
  2. P. Kang, J. Huh, K. Lee, S. Park, and H.-G. Rhee, "Design of a discrete flexure for SiC deformable mirror with PMN stacked-actuators," Opt. Express 29, 31778-31759 (2021).
  3. T. A. Rhoadarmer and J. R. P. Angel, "Low-cost, broadband static phase plate for generating atmosphericlike turbulence," Appl. Opt. 40, 2946-2955 (2001).
  4. T. Xu, Y. Li, W. Du, C. Ma, S. Cai, M. Lan, J. Wu, S. Yu, and J. Lin, "Simulating atmospheric turbulence using a spatial light modulator based on Fourier transform," in Proc. 2014 Conference on Lasers and Electro-Optics (CLEO)-Laser Science to Photonic Applications (San Jose, CA, USA, Jun. 8-13, 2014), pp. 1-2.
  5. U. Frisch, Turbulence: The legacy of AN Kolmogorov (Cambridge University Press, USA, 1995).
  6. S. M. Ebstein, "Pseudo-random phase plates," Proc. SPIE 4493, 150-155 (2002).
  7. P. F. Almoro and S. G. Hanson, "Random phase plate for wavefront sensing via phase retrieval and a volume speckle field," Appl. Opt. 47, 2979-2987 (2008).
  8. J. Y. Joo, S. G. Han, J. H. Lee, H.-G. Rhee, J. Huh, K. Lee, and S. Y. Park, "Development and characterization of an atmospheric turbulence simulator using two rotating phase plates," Curr. Opt. Photonics 6, 445-452 (2022).
  9. R. Rampy, D. Gavel, D. Dillon, and S. Thomas, "Production of phase screens for simulation of atmospheric turbulence," Appl. Opt. 51, 8769-8778 (2012).
  10. N. Mordant, "Fourier analysis of wave turbulence in a thin elastic plate," Eur. Phys. J. B 76, 537-545 (2010).
  11. H. Zhai, B. Wang, J. Zhang, and A. Dang, "Fractal phase screen generation algorithm for atmospheric turbulence," Appl. Opt. 54, 4023-4032 (2015).
  12. K. Wang, X. Su, Z. Li, S. Wu, W. Zhou, R. Wang, S. Chen, and X. Wang, "Generation of non-Kolmogorov atmospheric turbulence phase screen using intrinsic embedding fractional Brownian motion method," Optik 207, 164444 (2020).
  13. C. Liu, S. Chen, X. Li, and H. Xian, "Performance evaluation of adaptive optics for atmospheric coherent laser communications," Opt. Express 22, 15554-15563 (2014).
  14. S. M. Jefferies, D. A. Hope, M. Hart, and J. Nagy, "High-resolution imaging through strong atmospheric turbulence and over wide fields-of-view," in Proc. Advanced Maui Optical and Space Surveillance Technologies Conference (Maui, Hawaii, USA, Sep. 10-13, 2013), id. E52.
  15. C. Rao, L. Zhu, X. Rao, L. Zhang, H. Bao, L. Kong, Y. Guo, L. Zhong, X. Ma, M. Li, C. Wang, X. Zhang, X. Fan, D. Chen, Z. Feng, N. Gu, and Y. Liu, "Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian Solar Observatory," Astrophys. J. 833, 210 (2016).
  16. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC press, USA, 1996).
  17. J. W. Goodman, Statistical Optics, 2nd ed. (John Wiley & Sons, USA, 2015).
  18. D. G. Stork, "Toward a signal-processing foundation for computational sensing and imaging: electro-optical basis and merit functions," APSIPA Trans. Signal Inf. Process. 6, e8 (2017).
  19. S. E. Troxel, B. M. Welsh, and M. C. Roggemann, "Off-axis optical transfer function calculations in an adaptive-optics system by means of a diffraction calculation for weak index fluctuations," J. Opt. Soc. Am. A 11, 2100-2111 (1994).
  20. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
  21. Thorlab, "WFS40-14AR Shack-Hartmann WFS, 11.26 mm Square Aperture, 300 ㎛ Pitch, AR Coated MLA, 400 - 900 nm, Imperial Taps," (Thorlabs, Published date: Jul. 20, 2018), https://www.thorlabs.com/thorproduct.cfm?partnumber=WFS40-14AR&pn=WFS40-14AR;%2022 (Accessed Date: Sep. 12, 2022).
  22. L. Catala, A. Ziad, Y. Fantei-Caujolle, S. M. Crawford, D. A. H. Buckley, J. Borgnino, F. Blary, M. Nickola, and T. Pickering, "High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory," Mon. Not. R. Astron. Soc. 467, 3699-3711 (2017).
  23. T. R. Rimmele and J. Marino, "Solar adaptive optics," Living Rev. Sol. Phys. 8, 1-92 (2011).
  24. D. L. Hutt and D. H. Tofsted, "Effect of atmospheric turbulence on propagation of ultraviolet radiation," Opt. Laser Technol. 32, 39-48 (2000).