DOI QR코드

DOI QR Code

Hyperpolarized Carbon-13 Magnetic Resonance Imaging: Technical Considerations and Clinical Applications

  • Ying-Chieh Lai (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou) ;
  • Ching-Yi Hsieh (Department of Medical Imaging and Radiological Sciences, Chang Gung University) ;
  • Yu-Hsiang Juan (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou) ;
  • Kuan-Ying Lu (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou) ;
  • Hsien-Ju Lee (Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou) ;
  • Shu-Hang Ng (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou) ;
  • Yung-Liang Wan (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou) ;
  • Gigin Lin (Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou)
  • Received : 2024.01.18
  • Accepted : 2024.02.27
  • Published : 2024.05.01

Abstract

Hyperpolarized (HP) carbon-13 (13C) MRI represents an innovative approach for noninvasive, real-time assessment of dynamic metabolic flux, with potential integration into routine clinical MRI. The use of [1-13C]pyruvate as a probe and its conversion to [1-13C]lactate constitute an extensively explored metabolic pathway. This review comprehensively outlines the establishment of HP 13C-MRI, covering multidisciplinary team collaboration, hardware prerequisites, probe preparation, hyperpolarization techniques, imaging acquisition, and data analysis. This article discusses the clinical applications of HP 13C-MRI across various anatomical domains, including the brain, heart, skeletal muscle, breast, liver, kidney, pancreas, and prostate. Each section highlights the specific applications and findings pertinent to these regions, emphasizing the potential versatility of HP 13C-MRI in diverse clinical contexts. This review serves as a comprehensive update, bridging technical aspects with clinical applications and offering insights into the ongoing advancements in HP 13C-MRI.

Keywords

Acknowledgement

The authors acknowledge the helps from Chun-Yu Su, Yu-Ying Yu, Rainie Liu, Hsin-Ju Chiang, Dr. Lan-Yan Yang, Dr. Yu-Chun Lin, Dr. Kung-Chu Ho, Dr. Rolf F Schulte, Dr. Chien-Yuan Eddy Lin, and GE Healthcare kindly provides investigational sequences in multi-nuclear spectroscopy (MNS) research package.

References

  1. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 2003;100:10158-10163 https://doi.org/10.1073/pnas.1733835100
  2. Merritt ME, Harrison C, Storey C, Jeffrey FM, Sherry AD, Malloy CR. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci U S A 2007;104:19773-19777 https://doi.org/10.1073/pnas.0706235104
  3. Gallagher FA, Bohndiek SE, Kettunen MI, Lewis DY, Soloviev D, Brindle KM. Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med 2011;52:1333-1336 https://doi.org/10.2967/jnumed.110.085258
  4. Pantel AR, Ackerman D, Lee SC, Mankoff DA, Gade TP. Imaging cancer metabolism: underlying biology and emerging strategies. J Nucl Med 2018;59:1340-1349 https://doi.org/10.2967/jnumed.117.199869
  5. Mosessian S, Duarte-Vogel SM, Stout DB, Roos KP, Lawson GW, Jordan MC, et al. INDs for PET molecular imaging probesapproach by an academic institution. Mol Imaging Biol 2014;16:441-448 https://doi.org/10.1007/s11307-014-0735-2
  6. Ardenkjaer-Larsen JH, Leach AM, Clarke N, Urbahn J, Anderson D, Skloss TW. Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 2011;24:927-932 https://doi.org/10.1002/nbm.1682
  7. Hu KN. Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl Magn Reson 2011;40:31-41 https://doi.org/10.1016/j.ssnmr.2011.08.001
  8. Hovav Y, Feintuch A, Vega S. Theoretical aspects of dynamic nuclear polarization in the solid state-spin temperature and thermal mixing. Phys Chem Chem Phys 2013;15:188-203 https://doi.org/10.1039/C2CP42897K
  9. National Cancer Institute. Hyperpolarized pyruvate 13C injection investigator's brochure [accessed on February 14, 2024]. Available at: https://imaging.cancer.gov/programs_resources/cancer-tracer-synthesis-resources/docs/c13_pyruvate_IB_PDF.pdf
  10. Deh K, Zhang G, Park AH, Cunningham CH, Bragagnolo ND, Lyashchenko S, et al. First in-human evaluation of [1-13C] pyruvate in D2O for hyperpolarized MRI of the brain: a safety and feasibility study. Magn Reson Med 2024;91:2559-2567 https://doi.org/10.1002/mrm.30002
  11. Sacolick LI, Sun L, Vogel MW, Dixon WT, Hancu I. Fast radiofrequency flip angle calibration by Bloch-Siegert shift. Magn Reson Med 2011;66:1333-1338 https://doi.org/10.1002/mrm.22902
  12. Schulte RF, Sacolick L, Deppe MH, Janich MA, Schwaiger M, Wild JM, et al. Transmit gain calibration for nonproton MR using the Bloch-Siegert shift. NMR Biomed 2011;24:1068-1072 https://doi.org/10.1002/nbm.1657
  13. Larson PEZ, Gordon JW. Hyperpolarized metabolic MRI-acquisition, reconstruction, and analysis methods. Metabolites 2021;11:386
  14. Yen YF, Kohler SJ, Chen AP, Tropp J, Bok R, Wolber J, et al. Imaging considerations for in vivo 13C metabolic mapping using hyperpolarized 13C-pyruvate. Magn Reson Med 2009;62:1-10 https://doi.org/10.1002/mrm.21987
  15. Mayer D, Levin YS, Hurd RE, Glover GH, Spielman DM. Fast metabolic imaging of systems with sparse spectra: application for hyperpolarized 13C imaging. Magn Reson Med 2006;56:932-937 https://doi.org/10.1002/mrm.21025
  16. Ramirez MS, Lee J, Walker CM, Sandulache VC, Hennel F, Lai SY, et al. Radial spectroscopic MRI of hyperpolarized [1-13C] pyruvate at 7 tesla. Magn Reson Med 2014;72:986-995 https://doi.org/10.1002/mrm.25004
  17. Jiang W, Lustig M, Larson PE. Concentric rings K-space trajectory for hyperpolarized 13C MR spectroscopic imaging. Magn Reson Med 2016;75:19-31 https://doi.org/10.1002/mrm.25577
  18. Wiesinger F, Weidl E, Menzel MI, Janich MA, Khegai O, Glaser SJ, et al. IDEAL spiral CSI for dynamic metabolic MR imaging of hyperpolarized [1-13C]pyruvate. Magn Reson Med 2012;68:8-16 https://doi.org/10.1002/mrm.23212
  19. Meyer CH, Pauly JM, Macovski A, Nishimura DG. Simultaneous spatial and spectral selective excitation. Magn Reson Med 1990;15:287-304 https://doi.org/10.1002/mrm.1910150211
  20. Lau AZ, Chen AP, Hurd RE, Cunningham CH. Spectral-spatial excitation for rapid imaging of DNP compounds. NMR Biomed 2011;24:988-996 https://doi.org/10.1002/nbm.1743
  21. Xing Y, Reed GD, Pauly JM, Kerr AB, Larson PE. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates. J Magn Reson 2013;234:75-81 https://doi.org/10.1016/j.jmr.2013.06.003
  22. Bankson JA, Walker CM, Ramirez MS, Stefan W, Fuentes D, Merritt ME, et al. Kinetic modeling and constrained reconstruction of hyperpolarized [1-13C]-pyruvate offers improved metabolic imaging of tumors. Cancer Res 2015;75:4708-4717 https://doi.org/10.1158/0008-5472.CAN-15-0171
  23. Harrison C, Yang C, Jindal A, DeBerardinis RJ, Hooshyar MA, Merritt M, et al. Comparison of kinetic models for analysis of pyruvate-to-lactate exchange by hyperpolarized 13C NMR. NMR Biomed 2012;25:1286-1294 https://doi.org/10.1002/nbm.2801
  24. Hill DK, Orton MR, Mariotti E, Boult JK, Panek R, Jafar M, et al. Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data. PLoS One 2013;8:e71996
  25. Miloushev VZ, Granlund KL, Boltyanskiy R, Lyashchenko SK, DeAngelis LM, Mellinghoff IK, et al. Metabolic imaging of the human brain with hyperpolarized 13C pyruvate demonstrates 13C lactate production in brain tumor patients. Cancer Res 2018;78:3755-3760 https://doi.org/10.1158/0008-5472.CAN-18-0221
  26. Autry AW, Gordon JW, Chen HY, LaFontaine M, Bok R, Van Criekinge M, et al. Characterization of serial hyperpolarized 13C metabolic imaging in patients with glioma. Neuroimage Clin 2020;27:102323
  27. Autry AW, Park I, Kline C, Chen HY, Gordon JW, Raber S, et al. Pilot study of hyperpolarized 13C metabolic imaging in pediatric patients with diffuse intrinsic pontine glioma and other CNS cancers. AJNR Am J Neuroradiol 2021;42:178-184 https://doi.org/10.3174/ajnr.A6937
  28. Lee CY, Soliman H, Bragagnolo ND, Sahgal A, Geraghty BJ, Chen AP, et al. Predicting response to radiotherapy of intracranial metastases with hyperpolarized 13C MRI. J Neurooncol 2021;152:551-557 https://doi.org/10.1007/s11060-021-03725-7
  29. Chen J, Patel TR, Pinho MC, Choi C, Harrison CE, Baxter JD, et al. Preoperative imaging of glioblastoma patients using hyperpolarized 13C pyruvate: potential role in clinical decision making. Neurooncol Adv 2021;3:vdab092
  30. Zaccagna F, McLean MA, Grist JT, Kaggie J, Mair R, Riemer F, et al. Imaging glioblastoma metabolism by using hyperpolarized [1-13C]pyruvate demonstrates heterogeneity in lactate labeling: a proof of principle study. Radiol Imaging Cancer 2022;4:e210076
  31. Grist JT, McLean MA, Riemer F, Schulte RF, Deen SS, Zaccagna F, et al. Quantifying normal human brain metabolism using hyperpolarized [1-13C]pyruvate and magnetic resonance imaging. Neuroimage 2019;189:171-179 https://doi.org/10.1016/j.neuroimage.2019.01.027
  32. Lee CY, Soliman H, Geraghty BJ, Chen AP, Connelly KA, Endre R, et al. Lactate topography of the human brain using hyperpolarized 13C-MRI. Neuroimage 2020;204:116202
  33. Hackett EP, Pinho MC, Harrison CE, Reed GD, Liticker J, Raza J, et al. Imaging acute metabolic changes in patients with mild traumatic brain injury using hyperpolarized [1-13C]pyruvate. iScience 2020;23:101885
  34. Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, et al. Dynamic 13C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022;87:1136-1149 https://doi.org/10.1002/mrm.29049
  35. Uthayakumar B, Soliman H, Bragagnolo ND, Cappelletto NIC, Lee CY, Geraghty B, et al. Age-associated change in pyruvate metabolism investigated with hyperpolarized 13C-MRI of the human brain. Hum Brain Mapp 2023;44:4052-4063 https://doi.org/10.1002/hbm.26329
  36. Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, et al. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res 2016;119:1177-1182 https://doi.org/10.1161/CIRCRESAHA.116.309769
  37. Rider OJ, Apps A, Miller JJJJ, Lau JYC, Lewis AJM, Peterzan MA, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized 13C MRI. Circ Res 2020;126:725-736 https://doi.org/10.1161/CIRCRESAHA.119.316260
  38. Park JM, Reed GD, Liticker J, Putnam WC, Chandra A, Yaros K, et al. Effect of doxorubicin on myocardial bicarbonate production from pyruvate dehydrogenase in women with breast cancer. Circ Res 2020;127:1568-1570 https://doi.org/10.1161/CIRCRESAHA.120.317970
  39. Ma J, Malloy CR, Pena S, Harrison CE, Ratnakar J, Zaha VG, et al. Dual-phase imaging of cardiac metabolism using hyperpolarized pyruvate. Magn Reson Med 2022;87:302-311 https://doi.org/10.1002/mrm.29042
  40. Park JM, Harrison CE, Ma J, Chen J, Ratnakar J, Zun Z, et al. Hyperpolarized 13C MR spectroscopy depicts in vivo effect of exercise on pyruvate metabolism in human skeletal muscle. Radiology 2021;300:626-632 https://doi.org/10.1148/radiol.2021204500
  41. Woitek R, McLean MA, Gill AB, Grist JT, Provenzano E, Patterson AJ, et al. Hyperpolarized 13C MRI of tumor metabolism demonstrates early metabolic response to neoadjuvant chemotherapy in breast cancer. Radiol Imaging Cancer 2020;2:e200017
  42. Woitek R, McLean MA, Ursprung S, Rueda OM, Manzano Garcia R, Locke MJ, et al. Hyperpolarized carbon-13 MRI for early response assessment of neoadjuvant chemotherapy in breast cancer patients. Cancer Res 2021;81:6004-6017 https://doi.org/10.1158/0008-5472.CAN-21-1499
  43. Tran M, Latifoltojar A, Neves JB, Papoutsaki MV, Gong F, Comment A, et al. First-in-human in vivo non-invasive assessment of intra-tumoral metabolic heterogeneity in renal cell carcinoma. BJR Case Rep 2019;5:20190003
  44. Tang S, Meng MV, Slater JB, Gordon JW, Vigneron DB, Stohr BA, et al. Metabolic imaging with hyperpolarized 13C pyruvate magnetic resonance imaging in patients with renal tumorsinitial experience. Cancer 2021;127:2693-2704 https://doi.org/10.1002/cncr.33554
  45. Ursprung S, Woitek R, McLean MA, Priest AN, Crispin-Ortuzar M, Brodie CR, et al. Hyperpolarized 13C-pyruvate metabolism as a surrogate for tumor grade and poor outcome in renal cell carcinoma-a proof of principle study. Cancers (Basel) 2022;14:335
  46. Lee PM, Chen HY, Gordon JW, Wang ZJ, Bok R, Hashoian R, et al. Whole-abdomen metabolic imaging of healthy volunteers using hyperpolarized [1-13C]pyruvate MRI. J Magn Reson imaging 2022;56:1792-1806 https://doi.org/10.1002/jmri.28196
  47. Stodkilde-Jorgensen H, Laustsen C, Hansen ESS, Schulte R, Ardenkjaer-Larsen JH, Comment A, et al. Pilot study experiences with hyperpolarized [1-13C]pyruvate MRI in pancreatic cancer patients. J Magn Reson Imaging 2020;51:961-963 https://doi.org/10.1002/jmri.26888
  48. Gordon JW, Chen HY, Nickles T, Lee PM, Bok R, Ohliger MA, et al. Hyperpolarized 13C metabolic MRI of patients with pancreatic ductal adenocarcinoma. J Magn Reson Imaging 2023 Dec 2 [Epub]. https://doi.org/10.1002/jmri.29162
  49. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 2013;5:198ra108
  50. Aggarwal R, Vigneron DB, Kurhanewicz J. Hyperpolarized 1-[13C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur Urol 2017;72:1028-1029 https://doi.org/10.1016/j.eururo.2017.07.022
  51. Chen HY, Aggarwal R, Bok RA, Ohliger MA, Zhu Z, Lee P, et al. Hyperpolarized 13C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study. Prostate Cancer Prostatic Dis 2020;23:269-276 https://doi.org/10.1038/s41391-019-0180-z
  52. Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab 2020;31:105-114.e3 https://doi.org/10.1016/j.cmet.2019.08.024
  53. de Kouchkovsky I, Chen HY, Ohliger MA, Wang ZJ, Bok RA, Gordon JW, et al. Hyperpolarized 1-[13C]-pyruvate magnetic resonance imaging detects an early metabolic response to immune checkpoint inhibitor therapy in prostate cancer. Eur Urol 2022;81:219-221 https://doi.org/10.1016/j.eururo.2021.10.015
  54. Chen HY, Bok RA, Cooperberg MR, Nguyen HG, Shinohara K, Westphalen AC, et al. Improving multiparametric MRtransrectal ultrasound guided fusion prostate biopsies with hyperpolarized 13C pyruvate metabolic imaging: a technical development study. Magn Reson Med 2022;88:2609-2620 https://doi.org/10.1002/mrm.29399
  55. Sushentsev N, McLean MA, Warren AY, Benjamin AJV, Brodie C, Frary A, et al. Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nat Commun 2022;13:466
  56. Lin G, Hsieh CY, Lai YC, Wang CC, Lin Y, Lu KY, et al. Hyperpolarized [1‑13C]-pyruvate MRS evaluates immune potential and predicts response to radiotherapy in cervical cancer. Eur Radiol Exp 2024;8:46
  57. Gallagher FA, Woitek R, McLean MA, Gill AB, Manzano Garcia R, Provenzano E, et al. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci U S A 2020;117:2092-2098 https://doi.org/10.1073/pnas.1913841117
  58. Ye Z, Song B, Lee PM, Ohliger MA, Laustsen C. Hyperpolarized carbon 13 MRI in liver diseases: recent advances and future opportunities. Liver Int 2022;42:973-983 https://doi.org/10.1111/liv.15222
  59. Hu S, Yoshihara HA, Bok R, Zhou J, Zhu M, Kurhanewicz J, et al. Use of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate to probe the effects of the anticancer agent dichloroacetate on mitochondrial metabolism in vivo in the normal rat. Magn Reson Imaging 2012;30:1367-1372 https://doi.org/10.1016/j.mri.2012.05.012
  60. Schroeder MA, Atherton HJ, Ball DR, Cole MA, Heather LC, Griffin JL, et al. Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 2009;23:2529-2538 https://doi.org/10.1096/fj.09-129171
  61. Chung BT, Chen HY, Gordon J, Mammoli D, Sriram R, Autry AW, et al. First hyperpolarized [2-13C]pyruvate MR studies of human brain metabolism. J Magn Reson 2019;309:106617
  62. Qin H, Tang S, Riselli AM, Bok RA, Delos Santos R, van Criekinge M, et al. Clinical translation of hyperpolarized 13C pyruvate and urea MRI for simultaneous metabolic and perfusion imaging. Magn Reson Med 2022;87:138-149 https://doi.org/10.1002/mrm.28965
  63. Liu X, Tang S, Mu C, Qin H, Cui D, Lai YC, et al. Development of specialized magnetic resonance acquisition techniques for human hyperpolarized [13C,15N2]urea + [1-13C]pyruvate simultaneous perfusion and metabolic imaging. Magn Reson Med 2022;88:1039-1054 https://doi.org/10.1002/mrm.29266
  64. Chaumeil MM, Larson PE, Yoshihara HA, Danforth OM, Vigneron DB, Nelson SJ, et al. Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nat Commun 2013;4:2429
  65. Korenchan DE, Flavell RR, Baligand C, Sriram R, Neumann K, Sukumar S, et al. Dynamic nuclear polarization of biocompatible 13C-enriched carbonates for in vivo pH imaging. Chem Commun(Camb) 2016;52:3030-3033 https://doi.org/10.1039/C5CC09724J
  66. Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, Zandt Ri, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 2008;453:940-943 https://doi.org/10.1038/nature07017
  67. Marco-Rius I, Wright AJ, Hu DE, Savic D, Miller JJ, Timm KN, et al. Probing hepatic metabolism of [2-13C]dihydroxyacetone in vivo with 1H-decoupled hyperpolarized 13C-MR. MAGMA 2021;34:49-56 https://doi.org/10.1007/s10334-020-00884-y
  68. Gallagher FA, Kettunen MI, Hu DE, Jensen PR, Zandt RI, Karlsson M, et al. Production of hyperpolarized [1,4-13C2] malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci U S A 2009;106:19801-19806 https://doi.org/10.1073/pnas.0911447106