DOI QR코드

DOI QR Code

No-Touch Radiofrequency Ablation Using Twin Cooled Wet Electrodes for Recurrent Hepatocellular Carcinoma Following Locoregional Treatments

  • Seong Jun Hong (Seoul National University College of Medicine) ;
  • Jae Hyun Kim (Department of Radiology, Seoul National University Hospital) ;
  • Jeong Hee Yoon (Department of Radiology, Seoul National University Hospital) ;
  • Jeong Hoan Park (Department of Radiology, Seoul National University Hospital) ;
  • Jung-Hwan Yoon (Department of Internal Medicine, Seoul National University Hospital) ;
  • Yoon Jun Kim (Department of Internal Medicine, Seoul National University Hospital) ;
  • Su Jong Yu (Department of Internal Medicine, Seoul National University Hospital) ;
  • Eun Ju Cho (Department of Internal Medicine, Seoul National University Hospital) ;
  • Jeong Min Lee (Department of Radiology, Seoul National University Hospital)
  • Received : 2023.11.07
  • Accepted : 2024.02.24
  • Published : 2024.05.01

Abstract

Objective: To evaluate the therapeutic outcomes of no-touch radiofrequency ablation (NT-RFA) using twin cooled wet (TCW) electrodes in patients experiencing recurrent hepatocellular carcinoma (HCC) after undergoing locoregional treatments. Materials and Methods: We conducted a prospective, single-arm study of NT-RFA involving 102 patients, with a total of 112 recurrent HCCs (each ≤ 3 cm). NT-RFA with TCW electrodes was implemented under the guidance of ultrasonography (US)-MR/CT fusion imaging. If NT-RFA application proved technically challenging, conversion to conventional tumor puncture RFA was permitted. The primary metric for evaluation was the mid-term cumulative incidence of local tumor progression (LTP) observed post-RFA. Cumulative LTP rates were estimated using the Kaplan-Meier method. Multivariable Cox proportional hazard regression was used to explore factors associated with LTP. Considering conversion cases from NT-RFA to conventional RFA, intention-to-treat (ITT; including all patients) and per-protocol (PP; including patients not requiring conversion to conventional RFA alone) analyses were performed. Results: Conversion from NT-RFA to conventional RFA was necessary for 24 (21.4%) out of 112 tumors. Successful treatment was noted in 111 (99.1%) out of them. No major complications were reported among the patients. According to ITT analysis, the estimated cumulative incidences of LTP were 1.9%, 6.0%, and 6.0% at 1, 2, and 3 years post-RFA, respectively. In PP analysis, the cumulative incidence of LTP was 0.0%, 1.3%, and 1.3% at 1, 2, and 3 years, respectively. The number of previous locoregional HCC treatments (adjusted hazard ratio [aHR], 1.265 per 1 treatment increase; P = 0.004), total bilirubin (aHR, 7.477 per 1 mg/dL increase; P = 0.012), and safety margin ≤ 5 mm (aHR, 9.029; P = 0.016) were independently associated with LTP in ITT analysis. Conclusion: NT-RFA using TCW electrodes is a safe and effective treatment for recurrent HCC, with 6.0% (ITT analysis) and 1.3% (PP analysis) cumulative incidence of LTP at 2 and 3-year follow-ups.

Keywords

Acknowledgement

This study was supported by a research grant from RF Medical Co., Ltd. (Seoul, Korea, No. 06-2019-3530).

References

  1. European Association for the Study of the Liver. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2018;69:182-236
  2. Korean Liver Cancer Association (KLCA), National Cancer Center (NCC) Korea. 2022 KLCA-NCC Korea practice guidelines for the management of hepatocellular carcinoma. Korean J Radiol 2022;23:1126-1240
  3. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018;67:358-380
  4. Kim YS, Lim HK, Rhim H, Lee MW. Ablation of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol 2014;28:897-908
  5. Lee MW, Kang D, Lim HK, Cho J, Sinn DH, Kang TW, et al. Updated 10-year outcomes of percutaneous radiofrequency ablation as first-line therapy for single hepatocellular carcinoma < 3 cm: emphasis on association of local tumor progression and overall survival. Eur Radiol 2020;30:2391-2400
  6. Lee DH, Lee JM, Lee JY, Kim SH, Yoon JH, Kim YJ, et al. Radiofrequency ablation of hepatocellular carcinoma as first-line treatment: long-term results and prognostic factors in 162 patients with cirrhosis. Radiology 2014;270:900-909
  7. Hirooka M, Hiraoka A, Ochi H, Koizumi Y, Michitaka K, Joko K, et al. Prospective cohort trial to confirm the efficacy of no-touch radio frequency ablation. J Gastroenterol Hepatol 2019;34:567-574
  8. Hocquelet A, Aube C, Rode A, Cartier V, Sutter O, Manichon AF, et al. Comparison of no-touch multi-bipolar vs. monopolar radiofrequency ablation for small HCC. J Hepatol 2017;66:67-74
  9. Lee DH, Lee MW, Kim PN, Lee YJ, Park HS, Lee JM. Outcome of no-touch radiofrequency ablation for small hepatocellular carcinoma: a multicenter clinical trial. Radiology 2021;301:229-236
  10. Park SJ, Cho EJ, Lee JH, Yu SJ, Kim YJ, Yoon JH, et al. Switching monopolar no-touch radiofrequency ablation using octopus electrodes for small hepatocellular carcinoma: a randomized clinical trial. Liver Cancer 2021;10:72-81
  11. Suh YS, Choi JW, Yoon JH, Lee DH, Kim YJ, Lee JH, et al. No-touch vs. conventional radiofrequency ablation using twin internally cooled wet electrodes for small hepatocellular carcinomas: a randomized prospective comparative study. Korean J Radiol 2021;22:1974-1984
  12. Han S, Lee MW, Lee YJ, Hong HP, Lee DH, Lee JM. No-touch radiofrequency ablation for early hepatocellular carcinoma: 2023 Korean Society of Image-Guided Tumor Ablation guidelines. Korean J Radiol 2023;24:719-728
  13. Lee DH, Lee JM, Kim PN, Jang YJ, Kang TW, Rhim H, et al. Whole tumor ablation of locally recurred hepatocellular carcinoma including retained iodized oil after transarterial chemoembolization improves progression-free survival. Eur Radiol 2019;29:5052-5062
  14. Lee DH, Lee JM, Lee JY, Kim SH, Han JK, Choi BI. Radiofrequency ablation for intrahepatic recurrent hepatocellular carcinoma: long-term results and prognostic factors in 168 patients with cirrhosis. Cardiovasc Intervent Radiol 2014;37:705-715
  15. Choi JW, Lee JM, Lee DH, Yoon JH, Kim YJ, Lee JH, et al. Radiofrequency ablation using internally cooled wet electrodes in bipolar mode for the treatment of recurrent hepatocellular carcinoma after locoregional treatment: a randomized prospective comparative study. PLoS One 2020;15:e0239733
  16. Kielar A, Fowler KJ, Lewis S, Yaghmai V, Miller FH, Yarmohammadi H, et al. Locoregional therapies for hepatocellular carcinoma and the new LI-RADS treatment response algorithm. Abdom Radiol (NY) 2018;43:218-230
  17. Park S, Joo I, Lee DH, Bae JS, Yoo J, Kim SW, et al. Diagnostic performance of LI-RADS treatment response algorithm for hepatocellular carcinoma: adding ancillary features to MRI compared with enhancement patterns at CT and MRI. Radiology 2020;296:554-561
  18. Dietrich CF, Nolsoe CP, Barr RG, Berzigotti A, Burns PN, Cantisani V, et al. Guidelines and good clinical practice recommendations for contrast-enhanced ultrasound (CEUS) in the liver-update 2020 WFUMB in cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS. Ultrasound Med Biol 2020;46:2579-2604
  19. Lee DH, Lee JM. Recent advances in the image-guided tumor ablation of liver malignancies: radiofrequency ablation with multiple electrodes, real-time multimodality fusion imaging, and new energy sources. Korean J Radiol 2018;19:545-559
  20. Lee MW. Fusion imaging of real-time ultrasonography with CT or MRI for hepatic intervention. Ultrasonography 2014;33:227-239
  21. Mauri G, Cova L, De Beni S, Ierace T, Tondolo T, Cerri A, et al. Real-time US-CT/MRI image fusion for guidance of thermal ablation of liver tumors undetectable with US: results in 295 cases. Cardiovasc Intervent Radiol 2015;38:143-151
  22. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 2014;273:241-260
  23. Yoon JH, Lee JM, Klotz E, Woo H, Yu MH, Joo I, et al. Prediction of local tumor progression after radiofrequency ablation (RFA) of hepatocellular carcinoma by assessment of ablative margin using pre-RFA MRI and post-RFA CT registration. Korean J Radiol 2018;19:1053-1065
  24. Kim KW, Lee JM, Klotz E, Kim SJ, Kim SH, Kim JY, et al. Safety margin assessment after radiofrequency ablation of the liver using registration of preprocedure and postprocedure CT images. AJR Am J Roentgenol 2011;196:W565-W572
  25. Park J, Lee MW, Ahn SH, Han S, Min JH, Cha DI, et al. Treatment outcomes of percutaneous radiofrequency ablation for hepatocellular carcinomas: effects of the electrode type and placement method. Korean J Radiol 2023;24:761-771
  26. Chai Y, Li K, Zhang C, Chen S, Ma K. The short-term efficacy of no-touch radiofrequency ablation in treating cirrhosis-based small hepatocellular carcinoma. BMC Cancer 2019;19:497
  27. Ahn SJ, Lee JM, Lee DH, Lee SM, Yoon JH, Kim YJ, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol 2017;66:347-354