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What is Uncertainty Quantification?

Deep learning (DL) has been recognized for its potential 
in radiology, yet concerns regarding its reliability in clinical 
workflows limit its adoption. This has become a greater 
challenge in radiology societies following the recent 
awareness of hallucinations in large language models [1]. 
These arise from predictions made without an estimate of 
the trustworthiness of DL models [2]. DL models, including 
computer vision and language models, generate numerical 
outputs that resemble probability. However, these outputs 
are used for training the model and are not indicative of the 
actual likelihood of a specific outcome, because they lack 
calibration [3]. Consequently, if a model outputs a value 
of 0.8 for a particular diagnosis, it does not necessarily 
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imply that there is an 80% chance of the diagnosis 
being correct. Although methods exist to calibrate these 
probability-like model outputs either during or after 
training, such calibration alone does not address the 
underlying uncertainty of the model. This is because each 
output represents a point estimate from a distribution, and 
it is the spread of this distribution that reflects the level 
of uncertainty [2]. As a result, even when two predictions 
have the same calibrated probabilities, they can still exhibit 
different degrees of uncertainty, as shown in Figure 1. 
Additionally, in the medical literature, uncertainty is usually 
conveyed through intervals derived from population data 
rather than from individual samples [2]. These underscore 
the necessity for techniques that offer insights into a 
model’s uncertainty for each prediction, going beyond mere 
calibration. To this end, we will explore the key categories 
of uncertainty quantification (UQ) methods.

Types of Uncertainty Quantification

Frequentist Approaches
Frequentist approaches focus on data distribution within 

a target population without incorporating prior beliefs or 
subjective probabilities. Conformal prediction (CP), the most 
prominent method in this category and often referred to 
as distribution-free UQ, creates trustworthy prediction sets 
for each prediction with a statistical guarantee that such 
sets contain the ground truth at a user-specified error rate 
[4]. When it comes to suggesting a diagnosis, CP provides 
a trustworthy differential diagnosis list that guarantees the 
correct answer is included in the list as opposed to a single 
diagnosis. CP uses a ‘calibration dataset,’ which is a subset 
of the target population, to capture the model’s uncertainty 
based on the target population. CP is based on the principle 
of conformality, which gauges the ‘conformity’ of new data 
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points to the learned patterns in the training set. This 
approach ensures the existence of a correct diagnosis in 
the differential diagnosis list, irrespective of the underlying 
data distribution. Essentially, the ‘calibration dataset’ is 
used to refine the differential diagnosis list, which may 
expand as each sample deviates more from the training 
data distribution. One notable disadvantage of CP is the 
requirement of an additional data subset, exacerbating the 
challenge of data scarcity in radiology DL. This is especially 
true for rare diagnoses or underrepresented groups, as 
setting aside data for calibration can further constrain the 
already limited training dataset.

Probabilistic Methods
Probabilistic UQ assigns different values to the model 

parameters or variables based on a prior (assumption).

Ensemble Method
The ensemble method relies on the concept that the level 

of disagreement among various model outputs for a sample 
indicates the uncertainty associated with that sample [5]. As 
an analogy, consider a panel of radiologists who read studies. 
If half of the radiologists identified a pathology but the 
other half did not, the study would be considered uncertain. 
However, unanimous agreement among the readers indicates 
low uncertainty. The uncertainty value is derived using a 
measure of spread (e.g., variance, range, etc.) across the 
predictions made by various models. A significant limitation 
of this method is its high computational cost. Additionally, 
the final measure of spread only indicates a correlation with 
the uncertainty of the prediction rather than providing a 
direct interpretation of uncertainty.

Bayesian Methods
Bayesian methods run a model several times on an input 

while slightly changing the model parameters, with each 
inference assessing the spread of the prediction [6]. This 
is akin to a radiologist reviewing the same study multiple 
times under different circumstances. If the radiologist 
consistently finds the same result in different scenarios, the 
case is considered certain, and varying conclusions indicate 
uncertainty. Monte Carlo Dropout, a popular approach in this 
category, uses a single model and transforms it at inference 
time by randomly deactivating nodes based on probabilities 
specified ‘a priori’ [7]. This creates multiple unique models. 
Although straightforward to apply, this approach requires 
users to specify the probability of deactivating nodes (known 
prior distribution), and similar to the ensemble method, it 
can only indicate a correlation with the uncertainty of the 
prediction.

Evidential Deep Learning
Evidential DL (EDL) methods gather category-specific 

features from images as “evidence” to determine prediction 
certainty [8,9]. More evidence leads to higher confidence 
in the prediction. While EDL is less resource-demanding 
and has a robust theoretical foundation, its outputs lack 
statistical guarantees and require conversion into measures 
that are comprehensible to humans, a process that presents 
significant challenges.

Applications in Radiology

UQ can be used in various DL applications, including 
classification, detection, segmentation, and generation. 
In classification and detection, UQ enables models to not 

Fig. 1. Example of a case in which two predictions with identical calibrated probabilities may have different uncertainty levels due 
to the varying spread of their respective distributions. Two predictions, A (orange dot) and B (blue X mark), have the same calibrated 
probability but have different uncertainty levels represented by the respective whiskers.
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only localize and detect findings but also offer differential 
diagnoses ranked by confidence levels [10,11]. This serves 
as a “safety net,” allowing radiologists to concentrate on 
cases with high uncertainty or a broad differential, thus 
improving the diagnostic accuracy and patient outcomes. In 
segmentation, UQ highlights areas of low confidence within 
the segmentation map. For instance, in the DL segmentation 
of glioblastoma tumor areas for radiotherapy planning [12], 
this feature enables experts to review and possibly revise 
uncertain regions before finalizing treatment plans. Finally, 
UQ assists in ensuring the accuracy of generative models in 
radiology, allowing radiologists to determine the reliability of 
details in a synthetic image and identify trustworthy regions, 
thereby avoiding the introduction of artificial anomalies that 
could mimic pathological findings. Table 1 summarizes the 
other main use cases of UQ in radiology [13-16].

CONCLUSION

The potential of UQ to improve the reliability and 
trustworthiness of radiology DL applications is evident. 
However, integrating UQ into clinical settings involves 
navigating extensive research, regulatory approvals, and 
practical considerations [17,18]. UQ will likely become an 
essential component of medical DL tools because it provides 
insight into the certainty of predictions, which is vital for 

patient care given the complexity of understanding DL 
decision-making. Stakeholders should remain informed of 
these developments and actively participate in the dialogue 
and experimentation that will shape the future of UQ in 
medical artificial intelligence applications.
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Table 1. Additional use cases for UQ in radiological deep learning

Application Definition Example
Active learning UQ can be employed to select uncertain samples from the 

training dataset and continuously pass them through the 
model to force it to learn the features of those samples and 
improve its performance on uncertain samples overall

Hemmer et al. (2022) [13] used uncertainty 
values for active learning in pneumonia 
detection on chest X-rays images

Out-of-domain detection UQ can help detect out-of-domain samples among a given 
test dataset because samples that are further away from 
a model’s training domain will have higher uncertainty, so 
a threshold or selection process can be used to identify 
samples which may be out-of-domain based only on their 
uncertainty values

Lakara and Valdenegro-Toro (2022) [14] 
showed that uncertainty can be used to 
detect out-of-domain inputs 

Bias detection UQ can identify potential biases in a model because if a 
subpopulation of the data repeatedly yields high uncertainty 
values, this could be due to bias in the model

Faghani et al. (2022) [15] explain how UQ 
can highlight model biases 

Data drift/shift detection UQ can monitor the uncertainty associated with model 
predictions as the model is exposed to new data over 
time. An increase in prediction uncertainty might indicate 
that the model is facing data points that are significantly 
different from what it was trained on, suggesting potential 
data drift

Baier et al. (2021) [16] employed an 
uncertainty-based approach to detect data 
drift in neural networks 

UQ = uncertainty quantification
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