DOI QR코드

DOI QR Code

Development of AI-Based Body Shape 3D Modeling Technology Applicable in The Healthcare Sector

헬스케어 분야에서 활용 가능한 AI 기반 체형 3D 모델링 기술 개발

  • 이지용 (한국체육대학교 ) ;
  • 김창균 (강원대학교 AI소프트웨어학과)
  • Received : 2024.03.29
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

This study develops AI-based 3D body shape modeling technology that can be utilized in the healthcare sector, proposing a system that enables monitoring of users' body shape changes and health status. Utilizing data from Size Korea, the study developed a model to generate 3D body shape images from 2D images, and compared various models to select the one with the best performance. Ultimately, by proposing a system process through the developed technology, including personalized health management, exercise recommendations, and dietary suggestions, the study aims to contribute to disease prevention and health promotion.

이 연구는 헬스케어 분야에서 활용 가능한 AI 기반의 3D 체형 모델링 기술을 개발하고, 이를 통해 사용자의 체형 변화와 건강 상태를 모니터링 할 수 있는 시스템을 제안한다. 사이즈코리아의 데이터를 활용하여 2D 이미지로부터 3D 체형 이미지를 생성하는 모델을 개발하고, 다양한 모델을 비교하여 가장 성능이 우수한 모델을 선정하였다. 최종적으로, 개발된 기술을 통해 개인 맞춤형 건강 관리, 운동 추천, 식단 제안 등의 시스템 프로세스를 제안함으로써 질병 예방 및 건강 증진에 기여하고자 하였다.

Keywords

Acknowledgement

2023년도 강원대학교 대학회계 학술연구 조성비로 연구하였습니다.

References

  1. A. Tahrani, K. Boelaert, R. Barnes, S. Palin, A. Field, H. Redmayne, L. Aytok, and A. Rahim, "Body volume index: time to replace body mass index?," In: Endocrine Abstracts. Bioscientifica, vol. 15, Apr. 2008, pp. 104. 
  2. Y. Kim, "Revision data 3 law and Issues of insurance business-Focusing on the activation of digital healthcare services," vol. 14, Korea Insurance Law Journal, June, 2020, pp. 495-524. 
  3. B. H. Heath and J. L. Carter, "A modified somatotype method," American journal of physical anthropology, vol. 27, no. 1, July 1967, pp. 57-74.  https://doi.org/10.1002/ajpa.1330270108
  4. J. Yoon and J. Park, "Digital Transformation of Heath-Carter Somatotype Using Deep Learning," The Korean J. of Measurement and Evaluation in Physical Education and Sport Science, Dec. 2023, pp. 23-34. 
  5. J. Lee, S. Lee, J. Park and J. Yoon, "Exploring a 3D Body Images Based Somatotype Prediction Model using Multi-Class Classification Machine Learning," The Korean J. of Measurement and Evaluation in Physical Education and Sport Science, vol. 25, no. 3, Oct. 2023, pp. 13-28. 
  6. F. Hongjuan, B. Elizabeth, C. Xiaogugang, and S. Wei, "How to best assess abdominal obesity," Current Opinion in Clinical Nutrition & Metabolic Care, vol. 21, no. 5, Sept. 2018, pp. 360-365.  https://doi.org/10.1097/MCO.0000000000000485
  7. G. Park, C. Hwang, L. Ryung and H. Jang, "CNN-LSTM based Autonomous Driving Technology," The J. of the Korea institute of electronic communication sciences, vol. 18, no. 6, Dec. 2023, pp. 1259-1268. 
  8. M. Favalli, A. Fornaciai, I. Isola, S. Tarquini, and L. Nannipieri, "Multiview 3D reconstruction in geosciences," Computers & Geosciences, vol. 44, 2012, pp. 168-176.  https://doi.org/10.1016/j.cageo.2011.09.012
  9. S. Park, "Study on Management of Water Pipes in Buildings using Augmented Reality," The J. of the Korea institute of electronic communication sciences, vol. 18, no. 6, Dec. 2023, pp. 1229-1238. 
  10. J. Yoon, S. Lee, and J. Lee, "AI Somatotype System Using 3D Body Images: Based on Deep-Learning and Transfer Learning," Applied Sciences, vol. 14, no. 4, Mar. 2024, pp. 2608. 
  11. J. Lee, K. Kwon, C. Kim., and S. Youm, "Development of a Non-Contact Sensor System for Converting 2D Images into 3D Body Data: A Deep Learning Approach to Monitor Obesity and Body Shape in Individuals in Their 20s and 30s," Sensors, vol. 24, no. 1, Mar. 2024, pp. 270. 
  12. H. Kim, S. Yu, H. Ju, and Y. Choi, "A Study on Preprocessing Image Text Using Yolov4 in OCR System," Korea Information Processing Society, vol. 29, no. 2, Nov. 2022, pp. 964-966. 
  13. C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, "3d-r2n2: A unified approach for single and multi-view 3d object reconstruction." Proc. In Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, vol. 14, Oct. 2016, pp. 628-644. 
  14. C. L. Li, M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhutdinov, "Point cloud gan," arXiv preprint arXiv:1810.05795. vol. 32, Oct. 2018, pp. 12287-12298. 
  15. M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, "SMPL: A skinned multi-person linear model," In Seminal Graphics Papers: Pushing the Boundaries, vol. 2, no. 88, Aug. 2023, pp. 851-866. 
  16. S. Saito, T. Simon, J. Saragih, and H. Joo, "Pifuhd: Multi-level pixel-aligned implicit function for high-resolution 3d human digitization," In Proc. of the IEEE/CVF conference on computer vision and pattern recognition, Seattle, American, 2020, pp. 84-93.