DOI QR코드

DOI QR Code

Geometric Thermoelectric Generator Leg Shape Design for Efficient Waste Heat Recovery

효율적인 폐열 회수를 위한 기하학적 열전소자 다리 설계

  • Hyeon-Woo Kang ;
  • Jung-Hoe Kim ;
  • Young-Ki Cho ;
  • Won-Seok Choi ;
  • Hyun-Ji Lee ;
  • Hun-Kee Kim (Dept. Materials Processing and Engineering, Inha University)
  • 강현우 (인하대학교 첨단소재공정공학) ;
  • 김중회 (국방과학연구소 항공기술연구원 3부 2팀) ;
  • 조영기 (LIG넥스원 PGM 핵심기술연구소 1팀) ;
  • 최원석 (LIG넥스원 PGM 핵심기술연구소 1팀) ;
  • 이현지 (LIG넥스원 PGM 핵심기술연구소 1팀) ;
  • 김헌기 (인하대학교 첨단소재공정공학과)
  • Received : 2024.04.29
  • Accepted : 2024.06.12
  • Published : 2024.06.30

Abstract

Thermoelectric generator (TEG) generally do not have high heat conversion efficiencies. The performance of a thermoelectric generator module depends on the shape of the legs as well as the properties of the material and the number of legs. In this study, the leg shapes of thermoelectric elements are modeled into various geometric structures such as cylinder and cube shaped to efficiently harvest waste heat, and the electrical characteristics are compared numerically. The temperature gradient and power generation according to the bridge shape are found to be highest at the existing Cube shape. As a result of comparing the power generation using the cooling effect, the Cone shape was the highest in natural convection and the Hourglass shape was highest in forced convection. Research results confirm that geometry can affect the efficiency of thermoelectric generators.

열전 발전기(TEG)는 일반적으로 열 변환 효율이 높지 않다. 열전 발전기 모듈의 성능은 재료의 특성, 다리의 개수 외에도 다리의 형상에 따라 달라진다. 본 연구에서는 폐열을 효율적으로 수확할 수 있도록 열전소자의 다리 형상을 원통형, 큐브형 등 다양한 기하학적 구조로 모델링하여 전기적 특성을 수치상으로 비교하였다. 다리 형상에 따른 온도분포 및 발전량을 비교하였고 기존 Cube 모양이 가장 높게 나타났다. 냉각효과를 적용한 발전량을 비교한 결과 자연대류에서는 Cone, 강제대류에서는 Hourglass 모양이 가장 높았다. 본 연구 결과에 따르면 기하학적 구조가 열전 발전기의 효율에 영향을 미칠 수 있음을 확인하였다

Keywords

Acknowledgement

본 논문은 2024년도 LIG Nex1과 국방과학연구소의 재원을 지원받아 수행된 연구임.

References

  1. J. Malinauskaite, H. Jouhara, L. Ahmad, M. Milani, L. Montorsi, and M. Venturelli, "Energy efficiency in industry: EU and national policies in Italy and the UK," Energy, vol. 172, 2019, pp. 255-269. 
  2. M. Venturelli, D. Brough, M. Milani, L. Montorsi, and H. Jouhara, "Comprehensive numerical model for the analysis of potential heat recovery solutions in a ceramic industry," International Journal of Thermofluids, vol. 10, 2021, pp. 100080. 
  3. J. J. Fierro, A. Escudero-Atehortua, C. Nieto-Londono, M. Giraldo, H. Jouhara, and L. C Wrobel, "Evaluation of waste heat recovery technologies for the cement industry," International Journal of Thermofluids, vol. 7, 2020, pp. 100040. 
  4. R. Kroon, D. A. Mengistie, D. Kiefer, J. Hynynen, J. D. Ryan, L. Yu, and C. Muller, "Thermoelectric plastics: from design to synthesis, processing and structure-property relationships," Chemical Society Reviews, vol. 45, no. 22, 2016, pp. 6147-6164. 
  5. D. M. Rowe, Thermoelectrics handbook: macro to nano, Boca Raton, CRC press, 2018. 
  6. R. He, G. Schierning, and K. Nielsch, "Thermoelectric devices: a review of devices, architectures, and contact optimization," Advanced Materials Technologies, vol. 3, no. 4, 2018, pp. 1700256. 
  7. M. Kim, and Y. Kim, "Analysis of Cooling Characteristics according to Heating Reduction System Displacement of Major Heating Region on Power Inverter," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 261-266. 
  8. M. Kim, E. Park, Y. Kim, and B. Oh, "A Study on Cooling System for Efficiency Improvements of 3kW Outdoor Type Photovoltaic Inverter," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 5, 2014, pp. 617-623. 
  9. H. Kim, T. Kim, Y. Kim, and G. Hoang, "A Study on the Thermal Characteristics of COB LED using Thermoelectric Element," J. of the Korea Institute of Electronic Communication Sciences, vol. 9, no. 12, 2014, pp. 1435-1440. 
  10. W. H. Chen, P. H. Wu, X. D. Wang, and Y. L Lin, "Power output and efficiency of a thermoelectric generator under temperature control, " Energy Conversion and Management, vol. 127, 2016, pp. 404-415. 
  11. Y. J. Cui, K. F. Wang, L. Zheng, B. L. Wang, and C. W Zhang, "Theoretical model of fatigue crack growth of a thermoelectric pn-junction bonded to an elastic substrate," Mechanics of Materials, vol. 151, 2020, pp. 103623. 
  12. H. Jouhara, A. Zabnienska-Gora, N. Khordehgah, Q. Doraghi, L. Ahmad, L. Norman, and S. Dai, "Thermoelectric generator (TEG) technologies and applications," International Journal of Thermofluids, vol. 9, 2021, pp. 100063. 
  13. G. Casano, and S. Piva, "Experimental investigation of the performance of a thermoelectric generator based on Peltier cells," Experimental Thermal and Fluid Science, vol. 35, no. 4, 2011, pp. 660-669. 
  14. Y. Wu, H. Zhang, and L. Zuo, "Thermoelectric energy harvesting for the gas turbine sensing and monitoring system," Energy conversion and management, vol. 157, 2018, pp. 215-223. 
  15. J. Yan, X. Liao, D. Yan, and Y. Chen, "Review of micro thermoelectric generator," J. of Microelectromechanical Systems, vol. 27, no. 1, 2018, pp. 1-18. 
  16. J. Yang, and T. Caillat, "Thermoelectric materials for space and automotive power generation," MRS bulletin, vol. 31, no. 3, 2006, pp. 224-229. 
  17. S. Kumar, S. D. Heister, X. Xu, J. R. Salvador, and G. P. Meisner, "Thermoelectric generators for automotive waste heat recovery systems part I: Numerical modeling and baseline model analysis," J. of electronic materials, vol. 42, 2013, pp. 665-674. 
  18. S. Nag, A. Dhar, and A. Gupta, "Exhaust heat recovery using thermoelectric generators: a review," Advances in Internal Combustion Engine Research, 2018, pp. 193-206. 
  19. Z.G. Shen, L.L. Tian, and X. Liu, "Automotive exhaust thermoelectric generators: Current status, challenges and future prospects," Energy Conversion and Management, vol. 195, 2019, pp. 1138-1173. 
  20. R. Ovik, B. D. Long, M. C. Barma, M. Riaz, M. F. M. Sabri, S. M. Said, and R. Saidur, "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and sustainable energy reviews, vol. 64, 2016, pp. 635-659. 
  21. Hendricks and J. Terry, "Integrated thermoelectric-thermal system resistance optimization to maximize power output in thermoelectric energy recovery systems," MRS Online Proceedings Library (OPL), vol. 1642, 2014, pp. e1. 
  22. J. Yang, "Potential applications of thermoelectric waste heat recovery in the automotive industry," ICT 2005. 24th International Conference on Thermoelectrics, Clemson, South Carolina, USA, 2005, pp. 170-174. 
  23. M. Chen, L. A. Rosendahl, and T. Condra, "A three-dimensional numerical model of thermoelectric generators in fluid power systems," International Journal of Heat and Mass Transfer, vol. 54, no. 1-3, 2011, pp. 345-355. 
  24. J. Y. Jang, Y. C. Tsai, and C. W. Wu, "A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink," Energy, vol. 53, 2013, pp. 270-281. 
  25. G. FFraisse, M. Lazard, C. Goupil, and J. Y. Serrat, "Study of a thermoelement's behaviour through a modelling based on electrical analogy," International Journal of Heat and Mass Transfer, vol. 53, no. 17-18, 2010, pp. 3503-3512. 
  26. U. Erturun, K. Erermis, and K. Mossi, "Effect of various leg geometries on thermo-mechanical and power generation performance of thermoelectric devices," Applied Thermal Engineering, vol. 73, no. 1, 2014, pp. 128-141. 
  27. J. L. Gao, Q. G. Du, X. D. Zhang, and X. Q Jiang, "Thermal stress analysis and structure parameter selection for a Bi 2 Te 3-based thermoelectric module," J. of electronic materials, vol. 40, 2011, pp. 884-888. 
  28. M. Ranjan, and T. Maiti, "Device modeling and performance optimization of thermoelectric generators under isothermal and isoflux heat source condition," J. of Power Sources, vol. 480, 2020, pp. 228867. 
  29. H. C. Luo, and L. S. Cheng, "Numerical Study on Optimizing the Geometry of Segmented Asymmetrical Thermoelectric Generator," IOP Conference Series: Earth and Environmental Science, vol. 701, no. 1, 2021, pp. 012022 
  30. B. Sisik, and S. LeBlanc, "The influence of leg shape on thermoelectric performance under constant temperature and heat flux boundary conditions," Frontiers in Materials, vol. 7, 2020, pp. 595955. 
  31. Q. Doraghi, N. Khordehgah, A. Zabnienska-Gora, L. Ahmad, L. Norman, D. Ahmad, and H. Jouhara, "Investigation and computational modelling of variable teg leg geometries," ChemEngineering, vol. 5, no. 3, 2021, pp. 45 
  32. N. K. Karri, and C. Mo, "Structural reliability evaluation of thermoelectric generator modules: influence of end conditions, leg geometry, metallization, and processing temperatures," J. of Electronic Materials, vol. 47 , 2018, pp. 6101-6120. 
  33. Z. Varga, and E. Racz, "COMSOL 3D Simulation of Optimization of Waste Heat Recovery Using Thermoelectric Generator by Modifying the Design," 2022 IEEE 5th International Conference and Workshop Obuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, 2022. 
  34. A. Rjafallah, D. T. Cotfas, and P. A. Cotfas, "Legs Geometry Influence on the Performance of the Thermoelectric Module," Sustainability, vol. 14, no.23, 2022, pp. 15823. 
  35. M. A. Olivares-Robles, C. A. Badillo-Ruiz, and P. E. Ruiz-Ortega, "A comprehensive analysis on nanostructured materials in a thermoelectric micro-system based on geometric shape, segmentation structure and load resistance," Scientific Reports, vol. 10, no. 1 , 2020, pp. 21659.