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1. Introduction and Definitions

Dattoli et al. [10] and Dattoli and Torre [11] introduced and discussed the
theory of phase-space Hermite polynomials using an operator formalism. These
polynomials play a crucial role within the framework of phase-space formal-
ism of classical and quantum mechanics. The phase-space Hermite polynomials
Hm,n(x, y) are defined by the generating relation(see [11, p. 1637 (1)]; also see
[1] and[12]):

eh
T M̂z− 1

2h
T M̂h =

∞∑
m,n=0

Hm,n(x, y)
tmun

m!n!
, (1.1)

where T denotes the transpose and

z =

(
x
y

)
, h =

(
t
u

)
, |t| < ∞, |u| < ∞, t ̸= 0, u ̸= 0. (1.2)

The 2 × 2 matrix M̂ is

M̂ =

(
a b
b c

)
, ∆ = ac− b2 > 0, a > 0, c > 0. (1.3)
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From (1.1) to (1.3), it immediately follows that

exp

[
(ax + by)t + (bx + cy)u− 1

2

(
at2 + cu2 + 2btu

)]

=

∞∑
m,n=0

Hm,n(x, y)
tmun

m!n!
, (1.4)

where

Hm,n(x, y) = m!n!

[m−k
2 ]∑

r=0

[n−k
2 ]∑

s=0

×
min(m,n)∑

k=0

(−1)r+s(ax + by)m−2r−k(bx + cy)n−2s−karcs(−b)k

2r+sr!s!k!(m− 2r − k)!(n− 2s− k)!
. (1.5)

The following simultaneous partial differential equations (see [7]-[10]) have the
following solutions provided by the Hermite polynomials f = Hm,n(x, y):

1

∆

[
c(ax + by)

∂f

∂x
− b(ax + by)

∂f

∂y
− c

∂2f

∂x2
+ b

∂2f

∂x∂y
+ ∆f

]
−mf − f = 0, (1.6)

and
1

∆

[
−b(bx + cy)

∂f

∂x
+ a(bx + cy)

∂f

∂y
− a

∂2f

∂y2
+ b

∂2f

∂x∂y
+ ∆f

]
−nf − f = 0, (1.7)

where ∆ = ac− b2, or equivalently

1

∆

[
c(ax + by)

∂f

∂x
− b(ax + by)

∂f

∂y
− c

∂2f

∂x2
+ b

∂2f

∂x∂y
−m∆f

]
= 0,

and

1

∆

[
−b(bx + cy)

∂f

∂x
− a(bx + cy)

∂f

∂y
− a

∂2f

∂y2
+ b

∂2f

∂x∂y
− n∆f

]
= 0.

The polynomials Hm,n(x, y) are exploited in many fields of pure and applied
mathematics [3,4,5,10,11]. They are very useful in the description of the quan-
tum treatment [14] of coupled harmonic oscillators. In recent years several
mathematical physicists showed that Hermite polynomials have applications to
the quantum spectrum of the harmonic oscillator and in quantum optics (see
[2,6,11,13,17-20]; see also [23, 24]). The study of special functions from the
Weisnerś group-theoretic and operational methods point of view has witnessed
a significant evolution during recent years. The applications of the theory of
representations of group-theoretic and their Lie algebras allow interpretations
of many familiar one-variable special functions, for example, Miller [15] and
Weisner ([21] and [22]). Recently, a fundamental link between some generalized
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special functions of mathematical physics and certain Lie groups and Lie alge-
bras has been established, see for example [5]. This paper is set up as follows. In
Section 2, using the Weisner-Group-theoretic method approach to identify gener-
ating relations, we provide the first-order differential operators, the commutative
relations of the operators, and the extended form of the group generated by oper-
ators. Acordingly, in Section 3 by employing the results of Section 2, generating
functions involving the Hermite polynomials Hm,n(x, y) are obtained. Also, we
consider some special cases that would yield inevitably to many new and known
generating relations for the polynomials Hm,n(x, y). In Section 4, we follow the
approach of methods, relevant to operational calculus and special function (see
[4,6,10,11]) and obtain operational representations for the polynomials, which
are further exploited to derive generating relations for Hm,n(x, y).

2. Group-theoretic method

Weisner (see [21]) has devised a method for obtaining generating functions
for a set of functions that satisfy certain conditions. Among the functions which
do are the Hermite functions (see Weisner [22]). From the ordinary differential
equation which is satisfied by the set of functions under consideration partial
differential equations are constructed group of transformations under which this
differential equation is invariant. The method is based on finding non-trivial
contentious groups. Starting from equations (1.6) and (1.7) and replacing m and
n by p ∂

∂p and s ∂
∂s respectively, we obtain

1

∆

[
c(ax + by)

∂f

∂x
− b(ax + by)

∂f

∂y
− c

∂2f

∂x2
+ b

∂2f

∂x∂y
− ∆p

∂

∂p

]
= 0, (2.1)

and

1

∆

[
−b(bx + cy)

∂f

∂x
+ a(bx + cy)

∂f

∂y
− a

∂2f

∂y2
+ b

∂2f

∂x∂y
− ∆s

∂

∂s

]
= 0. (2.2)

Note that, since f(x, y, p, s) = Hm,n(x, y)pmsn is the solution of (1.6) and (1.7),
then it is also a solution of (2.1) and (2.2). Let us define the following first-order
differential operators:

A1 =

[
p
∂

∂p

]
, A2 =

[
s
∂

∂s

]
, A3 =

1

p∆

[
c
∂

∂x
− b

∂

∂y

]
, A4 = p

[
(ax + by) − ∂

∂x

]
,

A5 =
1

−s∆

[
b
∂

∂x
− a

∂

∂y

]
, A6 = s

[
(bx + cy) − ∂

∂y

]
.

Consequently, we have

A1 [Hm,n(x, y)pmsn] = mHm,n(x, y)pmsn,

A2 [Hm,n(x, y)pmsn] = nHm,n(x, y)pmsn,

A3 [Hm,n(x, y)pmsn] = mHm−1,n(x, y)pm−1sn,



684 Shaikha Alshomeli, Mohannad Shahwan, Maged Bin-Saad

A4 [Hm,n(x, y)pmsn] = Hm+1,n(x, y)pm+1sn,

A5 [Hm,n(x, y)pmsn] = nHm,n−1(x, y)pmsn−1,

A6 [Hm,n(x, y)pmsn] = Hm,n+1(x, y)pmsn+1.

Regarding the Lie bracket [, ] defined by [A,B] = AB −BA, we lead to

[A1, A2] = 0, [A2, A3] =, 0 [A3, A4] = 0, [A4, A5] = 0, [A5, A6] = 0,

[A1, A3] = 0, [A2, A4] = 0, [A3, A5] = 0, [A4, A6] = 0,

[A1, A4] = 0, [A2, A5] = 0, [A3, A6] = 0,

[A1, A5] = 0, [A2, A6] = 0,

[A1, A6] = 0, and [Ai, Aj ] = AiAj −AjAi, i, j ∈ {1, 2, 3, 4, 5, 6} i ̸= j.

According to the definition of Lie algebra, the above commutation relations
show that the set of operators generate some Lie algebra λ. It is clear that the
differential operators:

 L1 =
1

∆

[
c(ax + by)

∂

∂x
− b(ax + by)

∂

∂y
− c

∂2

∂x2
+ b

∂2

∂x∂y
+ ∆

]
−p

∂

∂p
− 1, (2.3)

and

L2 =
1

∆

[
−b(bx + cy)

∂

∂x
+ a(bx + cy)

∂

∂y
− a

∂2

∂y2
+ b

∂2

∂x∂y
+ ∆

]
−s

∂

∂s
− 1, (2.4)

can be expressed as

L1 = A3A4 −m− 1 and L2 = A5A6 − n− 1,

such that

[L1, Ai] = 0 and [L2, Ai] = 0, i = {1, 2, 3, 4, 5, 6}. (2.5)

The extended forms of the group generated by {Ai : i = 1, 2, 3, 4, 5, 6} are as
follows:

ea1A1f(x, y, p, s) = f(x, y, pea1 , s),

ea2A2f(x, y, p, s) = f(x, y, p, sea2),
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ea3A3f(x, y, p, s) = f
(
x + c

p∆a3, y − b
p∆a3, p, s

)
,

ea4A4f(x, y, p, s) = exp (apxa4 + bpya4) f (x− pa4, y, p, s) ,

ea5A5f(x, y, p, s) = f
(
x− b

s∆a5, y + a
s∆a5, p, s

)
,

ea6A6f(x, y, p, s) = exp (bsxa6 + csya6) f (x, y − sa6, p, s) .

Then, we find that

exp (a6A6 + a5A5 + a4A4 + a3A3 + a2A2 + a1A1) f(x, y, p, s)

= exp

(
a

(
x− b

s∆
a5

)
a4 + b(y − sa6)a4

)
×f

(
x− b

s∆
a5 − a4 +

c

p∆
a3, y − sa6 +

a

s∆
a5 −

b

s∆
a3, pe

a1 , sea2

)
. (2.6)

3. Generating functions via Weisnerś method

From the discussion in Section 2, we observe that

f(x, y, p, s) = Hm,n(x, y)pmsn,

is a solution of the following systems:{
L1f = 0

(A3A4 −m)f = 0
and

{
L2f = 0

(A5A6 − n)f = 0.

From equation (2.5), we easily see that

SL1 (Hm,n(x, y)pmsn) = L1S (Hm,n(x, y)pmsn) ,

and

SL2 (Hm,n(x, y)pmsn) = L2S (Hm,n(x, y)pmsn) ,

where S = exp (a6A6 + a5A5 + a4A4 + a3A3 + a2A2 + a1A1).

Therefore, the transformation S(Hm,n(x, y)pmsn) is also annulled by L1 and L2.

Proposition 3.1. The following generating equation holds:

exp(bxh + cyh)Hm,n

(
x− b

s∆
g, y − sh +

a

s∆
g

)
pmsn

=

∞∑
l=0

∞∑
k=0

glhk

l!k!
Hm,n+k−l(x, y)pmsn+k−l. (3.1)
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Proof. By putting ai = 0, {i = 1, 2, 3, 4}, a5 = g, a6 = h and writing f(x, y, p, s) =
Hm,n(x, y)pmsn in (2.6), we get

ehA6egA5(Hm,n(x, y)pmsn)

= exp(bxh + cyh)Hm,n

(
x− b

s∆
g, y − sh +

a

s∆
g

)
pmsn. (3.2)

Also, we have

ehA6egA5(Hm,n(x, y)pmsn)

=

∞∑
l=0

∞∑
k=0

glhk

l!k!

(
Hm,n+k−l(x, y)pmsn+k−l

)
. (3.3)

Now, combining (3.2) and (3.3), we obtain the generating relation (3.1).□

Now, some special cases of equation (3.1) are of interest. By putting g = 0, p =
s = 1 in (3.1), we find that

exp(bxh + cyh)Hm,n (x, y − h) =

∞∑
k=0

hk

k!
Hm,n+k(x, y). (3.4)

Again, by putting h = 0, p = s = 1 in (3.1), we obtain

Hm,n

(
x− b

s∆
g, y +

a

s∆
g

)
=

∞∑
l=0

gl

l!
Hm,n−l(x, y). (3.5)

Next, we derive another generating relation.

Proposition 3.2. The following generating equation holds:

exp(axt + byt)Hm,n

(
x +

c

p∆
r − tp, y − b

p∆
r

)
pmsn

=

∞∑
l=0

∞∑
k=0

rltk

l!k!

(
Hm+k−l,n(x, y)pm+k−lsn

)
. (3.6)

Proof. By putting ai = 0, (i = 1, 2, 5, 6), a3 = r, a4 = t and writing f(x, y, s, p) =
Hm,n(x, y)pmsn in (2.6), we get

etA4erA3(Hm,n(x, y)pmsn)

= exp(axt + byt)Hm,n

(
x +

c

p△
r − tp, y − b

p△
r

)
pmsn.

Also, we have

etA4erA3(Hm,n(x, y)pmsn =

∞∑
l=0

∞∑
k=0

rltk

l!k!

(
Hm+k−l,n(x, y)pm+k−lsn

)
.

Combining the above two equations, we get the desired generating relation
(3.6).□
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By putting r = 0, p = s = 1 in (3.6), we get

exp(axt + byt)Hm,n (x− t, y) =

∞∑
k=0

tk

k!
(Hm+k,n(x, y)) . (3.7)

On setting t = 0, p = s = 1 in (3.6), we obtain

Hm,n

(
x +

c

∆
r, y − b

∆
r

)
=

∞∑
l=0

rl

l!
(Hm−l,n(x, y)) . (3.8)

Noteworthy is the following special case. Indeed, by letting a = 2, b = −t, y = 1,
and c = m = n = 0, in (3.7), we get the known result due to Miller [15]:

exp
(
2xt− t2

)
=

∞∑
k=0

tk

k!
Hk(x). (3.9)

4. Generating functions via operational identities

In this section, we will utilize operational identities to obtain generating func-
tions for the Hermite polynomials Hm,n(x, y). First of all, if we let z = ax + by
and u = bx+ cy, the series representation (1.5) can then be adjusted as follows:

Hm,n(z, u) = m!n!

[m−k
2 ]∑

r=0

[n−k
2 ]∑

s=0

×
min(m,n)∑

k=0

(−1)r+szm−2r−kun−2s−karcs(−b)k

2r+sr!s!k!(m− 2r − k)!(n− 2s− k)!
. (4.1)

According to the derivative operator (see [16]):(
∂

∂x

)k

(ax + by)m =
ak

(m− k)!
(ax + by)m−k,

and the abbreviations z and u, we can show that(
∂z

∂x

)2r+k

zm =
a2r+km!

(m− 2r − k)!
zm−2r−k, (4.2)

(
∂u

∂y

)2s+k

un =
c2s+kn!

(n− 2s− k)!
un−2s−k, (4.3)(

∂u

∂x

)2s+k

un =
b2s+kn!

(n− 2r − k)!
un−2s−k, (4.4)

and (
∂z

∂y

)2r+k

zm =
b2r+km!

(m− 2r − k)!
zm−2r−k. (4.5)
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By using the identities (4.2) and (4.3), the series representation (4.1), can be
rewritten in the form

Hm,n(z, u) =

[m−k
2 ]∑

r=0

[n−k
2 ]∑

s=0

min(m,n)∑
k=0

(−1)r+s+k
(
∂z
∂x

)2r+k
zm
(

∂u
∂y

)2s+k

unarcsbk

2r+sa2r+kc2s+kr!s!k!
, (4.6)

which further yields the following operational identity.

Proposition 4.1. The following operational identity holds:

Hm,n(z, u) = exp

−( ∂z∂x)2
2a

−

(
∂u
∂y

)2
2c

−
b ∂z
∂x

∂u
∂y

ac

 {zmun}. (4.7)

Similarly, using the identities (4.4) and (4.5), we can easily establish the follow-
ing operational identity.

Proposition 4.2. The following operational identity holds:

Hm,n(z, u) = exp

−a
(

∂z
∂y

)2
2b2

−
c
(
∂u
∂x

)2
2b2

−
∂z
∂y

∂u
∂x

b

 {zmun}. (4.8)

The result of applying the exponential operator

exp

a
(

∂z
∂y

)2
2b2

+
c
(
∂u
∂x

)2
2b2

+

∂z
∂y

∂u
∂x

b

 ,

to both sides of the equation (4.7) is

zmun = exp

[
1

2a

(
∂z

∂x

)2

+
1

2c

(
∂u

∂y

)2

+
b

ac

(
∂z

∂x

)(
∂u

∂y

)]
Hm,n(z, u)

which can be further exploited to derive the following generating relation

zmun = (−1)
1
2 (m+n)

[m−k
2 ]∑

r=0

[n−k
2 ]∑

s=0

min(m,n)∑
k=0

(2r + k)!(2s + k)!

2r+sr!s!k!

(
m

2r + k

)(
n

2s + k

)

Hm−2r−k,n−2s−k

(
z√

( − 1)
,

u√
( − 1)

)
arcsbk. (4.9)
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Next, in equation (4.7), multiply throughout by the factor tmhn

m!n! and then take
the double summation of both the sides, we obtain:

∞∑
m,n=0

Hm,n(z, u)
tmhn

m!n!
= exp

−( ∂z∂x)2
2a

−

(
∂u
∂y

)2
2c

−
∂z
∂x

∂u
∂y

ac

× ezt+uh. (4.10)

Yet another generating function from the assertion (4.7) would occur when we

multiply both sides of (4.7) by (α)m(β)n
tmhn

m!n! . If in this case, we take the double
sum and then use the binomial theorem, we shall obtain the following generating
function:

∞∑
m,n=0

(α)m(β)nHm,n(z, u)
tmhn

m!n!

= exp

−( ∂z∂x)2
2a

−

(
∂u
∂y

)2
2c

−
∂z
∂x

∂u
∂y

ac

× (1 − zt)−α(1 − uh)−β . (4.11)

Similarly, as in the proof of (4.11), we can show that

∞∑
m,n=0

(α)m+nHm,n(z, u)
tmhn

m!n!

= exp

−( ∂z∂x)2
2a

−

(
∂u
∂y

)2
2c

−
∂z
∂x

∂u
∂y

ac

× (1 − z − u)−α. (4.12)

Additionally, using the operational identity (4.8), we can use an analogous pro-
cedure as in the proofs of the formulas (4.10), (4.11), and (412) to obtain three
more generating functions as follows:

∞∑
m,n=0

Hm,n(z, u)
tmhn

m!n!
= exp

−
(

∂z
∂y

)2
2ab2

−
(
∂u
∂x

)2
2cb2

−
∂u
∂x

∂z
∂y

b

× ezt+uh, (4.13)

∞∑
m,n=0

(α)m(β)nHm,n(z, u)
tmhn

m!n!

= exp

−
(

∂z
∂y

)2
2ab2

−
(
∂u
∂x

)2
2cb2

−
∂u
∂x

∂z
∂y

b

× (1 − zt)−α(1 − uh)−β , (4.14)

and
∞∑

m,n=0

(α)m+nHm,n(z, u)
tmhn

m!n!
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= exp

−
(

∂z
∂y

)2
2ab2

−
(
∂u
∂x

)2
2cb2

−
∂u
∂x

∂z
∂y

b

× (1 − zt− uh)−α. (4.15)

We can also rewrite the series representation (4.1) as follows:

Hm,n(z, u) = m!n!

min(m,n)∑
k=0

(−1)kbk

k!(m− k)!(n− k)!

×(m− k)!

[m−k
2 ]∑

r=0

(−1)rarzm−2r−k

2rr!(m− 2r − k)!
× (n− k)!

[n−k
2 ]∑

s=0

(−1)scszn−2s−k

2ss!(n− 2s− k)!
. (4.16)

Now, by the result:

(−n)k =
(−1)kn!

(n− k)!
, n ≥ k ≥ 0,

and the definition of the ordinary Hermite polynomials (see [2]):

Hen(x) = n!

[n
2 ]∑

r=0

(−1)rxn−2r

r!(n− 2r)!
, (4.17)

the assertion (4.16) can be written as

Hm,n(z, u) =

min(m,n)∑
k=0

(−zub)k(−m)k)(−n)k
k!(

√
a)m−k(

√
c)n−k

×Hem−k

(
z√
a

)

×Hen−k

(
u√
c

)
. (4.18)

The next generating function is now obtained by starting with (4.18), multiplying
both sides by tmhn, and then taking the double sums:

∞∑
m,n=0

Hm,n(z, u)tmhn =

min(m,n)∑
k=0

∞∑
m,n=0

(−zub)k(−m)k(−n)k(
√
a)k(

√
c)k

k!

×Hem−k

(
z√
a

)
×Hen−k

(
u√
c

)
(t
√
a)m(h

√
c)n. (4.19)

Moreover, according to the fact that

(
√
a)m−k

(
1 − ∂z

∂x

a

2z

)m−k

zm−k = Hem−k

(
z√
a

)
,

the generating function (4.19), further yields the interesting generating case:

∞∑
m,n=0

Hm,n(z, u)tmhn
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=

∞∑
m,n=0

2F0

[
−m,−n;−;

(
1 − ∂z

∂x

a

2z

)−1(
1 − ∂u

∂y

c

2u

)−1
]

×
((

1 − ∂z

∂x

a

2z

)
t

)m((
1 − ∂u

∂y

c

2u

)
h

)n

, (4.20)

where 2F0(.) is a special case of the generalized hypergeometric function pFq

(see[16]). The previously outlined procedure offers a useful tool for the derivation
of other families of generating functions for the polynomials Hm,n(x, y). For
instance, let

z = ax + by, u = bx + cy, z = aτ + bν, u = bτ + cν

and let us consider the generating relation

f(z, u, z, u|t, h) =

∞∑
m,n=0

Hm,n(z, u) ×Hm,n(z, u)
tmhn

m!n!
, (4.21)

which because of the assertion (4.7) yields the following bilinear-generating func-
tion

∞∑
m,n=0

Hm,n(z, u) ×Hm,n(z, u)
tmhn

m!n!
= exp

−( ∂z∂x)2
2a

−

(
∂u
∂y

)2
2c

−
b ∂z
∂x

∂u
∂y

ac


exp

[
−
(
∂z
∂τ

)2
2a

−
(
∂u
∂ν

)2
2c

−
b ∂z
∂τ

∂u
∂ν

ac

]
× ezzt+uuh. (4.22)

5. Concluding Remarks

The present paper concerns with the two-variables and two index polyno-
mials Hm,n(x, y) introduced by Hermite (see [1] and [12]), whose application
within the context of the phase space approach to physical problems is sug-
gested. This paper is devote to discuss with some details the generating re-
lations of the Hermite polynomials Hm,n(x, y) by using the Weisnerś group-
theoretic and operational representations technique. Accordingly, in Section 3,
generating functions involving the Hermite polynomials Hm,n(x, y) are obtained
by utilizing the outcomes of Section 2. The operational representations for the
polynomialsHm,n(x, y) are obtained in Section 4 by employing operational calcu-
lus methods. These representations are then used to derive generating relations
for Hm,n(x, y).
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