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dense, left join-dense and left meet-dense induced by bi-partially ordered
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of these concepts and give an example related to them.

AMS Mathematics Subject Classification : 03E72, 54A40, 54B10.

Key words and phrases : Generalized residuated lattices, bi-partially or-
dered sets, right join-dense, right meet-dense, left join-dense, left meet-
dense.

1. Introduction

In this paper, we propose the concepts that characterize bi-partially ordered
sets on complete generalized residuated lattices, namely right join-dense, right
meet-dense, left join-dense, and left meet-dense. We conduct a comprehensive
investigation into the properties of these concepts, and provide a relevant ex-
ample related to them. The purpose of the paper is to contribute to the under-
standing of the structural and behavioral characteristics of bi-partially ordered
sets on complete generalized residuated lattices through the exploration of these
concepts.

2. Preliminaries

In this section, we present some preliminary concepts and properties.

Definition 2.1. [2, 6, 7, 8, 9] A structure (L,V,A,®,—,=, L, T) is called a
generalized residuated lattice if it satisfies the following three conditions:

(GR1) (L,V,A,T,1) is bounded where T is the upper bound and L is the
universal lower bound,
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(GR2) (L,®, T) is a monoid where T is the identity,
(GR3) it satisfies a residuation ; i.e., a @b < cif and only if a < b — ¢
if and only if b < a = ¢.

In this paper, we always assume that (L,A,V,®,—,=,T, 1) is a complete
generalized residuated lattice.

Lemma 2.2. [1, 4, 5, 6, 8] Let x,y,z € L. Let {x;}ier,{yi}tiecr C L. Then the
following hold.

() Ify<z thenzOy<zOz,z—>y<zcz—z,zozr<y—-z,z=>y<zc=z
and z =>x <y =x.

(2)
r— (/\ier yt) = /\ieI‘ (r = yi), (\/'LGF xl) — Y= /\'LEF(mi —Y),
(Viel" 552) - (\/z r yz) > Nier (@i = yi), (Nier xi) = (Nier yz) > Nier (@i = yi),
r = (/\ieF yS = Nier @ =), (Vjer xz) =y = Nier(zi = v),
(Vier@i) = (Vierv) = Nier (@i = 41) s (Aier i) = (Nier %) = Nier (@ = i)

B)(zoy) mz=2—2(y—=z2)and (z0y)=z=y= (z=2).

Definition 2.3. [5, 6] Let X be a set. A map e : X x X — L is called an
r-partial order (or right-partial order) if it satisfies the following three conditions
(01) e%(z,z) =T forall x € X,
(02) If e (x,y) = €% (y,x) = T where z,y € X, then z =y,
(R) e (z,y) ® e (y, 2) < e (x,2) for all z,y,z € X.

A map e : X x X — L is called an [-partial order (or left partial order) if it
satisfies the following three conditions :
(01) e (z,2) =T for all 7 € X,
(02) If e (z,y) = e (y,2) = T where 2,y € X, then x =y,
(L) e (y,2) @ el (2, y) < el (x, 2) for all 2, y, 2 € X.

The triple (X, €'y, elX) is called a bi-partially ordered set.

Definition 2.4. [6] Let (X, eg(,elX) be a bi-partially ordered set. Let A € LX.
(1) A point zq is called an r-join (or right-join) of A, denoted by xg = U, A4, if
it satisfies

(RJ1) A(z) < e’ (x,x0) for all z € X,

(RJ2) A ex [Alx) = e (2, )] < e (wo,y) for all y € X.

(2) A point z; is called an r-meet (or right-meet) of A, denoted by x; =, A4, if
it satisfies

(RM1) A(z) < e’ (x1,z) for all z € X,

(RM2) A cx [A(z) = ek (y,2)] < e (y,x1) for all y € X.

(3) A point g is called an [-join (or left-join) of A, denoted by xg = LI A, if it
satisfies

(LJ1) A(x) < €l (z,2) for all x € X,

(LI2) Auex [A(z) = e (z,y)] < el (zo,y) for all y € X.



Bi-interior systems and various completeness 501

(4) A point 1 is called an [-meet (or left-meet) of A, denoted by z1 = M A, if it
satisfies

(LM1) A(x) < ek (w1, ) for all 2 € X,

(LM2) A,cx [A(@) = e (y,2)] <€l (y,z1) for all y € X

(5) X is r-join complete (resp. r-meet complete) if there exists U, A (resp. M,.A)
for all A € LX.

(6) X is l-join complete (resp. l-meet complete) if there exists LA (resp. M;A)
for all A € L.

Lemma 2.5. [6] Let (X eX,eX) be a bi-partially ordered set. Let xg,x1 € X.
Let A € LX. Then the following hold.

(1) 2o = U, A if and only if N\, ¢ x [A(x) = ek (z,y)] = € (wo,y) for ally € X.
(2) 21 =M, A if and only if N\, ¢ x [A(x) = €% (y,x)] = € (y,x1) for ally € X.
(3) wo = LA if and only if \,cx [Alz) — eX(x,y)] el (wo,y) for ally € X.
(4) z1 = A if and only if \,cx [A(z) = ek (y,2)] = €l (y,21) for ally € X.
(5) U, A, N.A, LA and M A are unique if each exists.

3. Various denses on generalized residuated lattices

Definition 3.1. [6] Let (X, %, ey ) and (Y, ey, e}) be bi-partially ordered sets.
Let f: X — Y be a map. Define four maps f,.7, 77, fi, [~ : LX — LY by

 (A)Y) = Veex ey (y, f(2) © A(z)],
LA = Vaex [A@) © e (F(@), y)],
fil (DY) = Vaex [Al@) © ey (v, f(2)]
(7AW = Vaex v (f(2),9) © Al)

where A € LX.

Definition 3.2. Let (X, €'y, efx) be a bi-partially ordered set. Let Y C X. Let
1 :Y — X be the inclusion map.

(1) Y is called an r-join-dense (or right join-dense) in X if for all z € X, there
exists A € LY such that x =| |, i,2(4).

(2) Y is called an r-meet-dense (or right meet-dense) in X if for all x € X, there
exists A € LY such that x = 1,357 (A).

(3) Y is called an [-join-dense (or left join-dense) in X if for all x € X, there
exists A € LY such that z = | |, i;7 (4).

(4) Y is called an l-meet-dense (or left meet-dense) in X if for all x € X, there
exists A € LY such that x = M;i;~ (A).

Lemma 3.3. Let (X eX,eX) be a bi-partially ordered set. Then the following
hold.

(1) /\rEX [eg((xay) = eg((xvz)] 65(( ) forally,z € X.

) /\rEX [eg((yvx) — GTX(Z,IL‘)] 65(( ) forally,z € X.
(3) Nsex [elX(x,y)—)elX(x,z)] :elX( y,2z) forally,z € X.
(4) Npex [elX(y,x) = elX(z,x)] = elX(z,y) forally,z € X.
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Proof. (1) Note that A\ ¢y [e% (2,y) = e (z,2)] < ek (y,y) = ex(y, 2) = ex (4, 2).
On the other hand, since €% (z,y) © €% (y, 2) < €% (z, z) for all z € X, we have
by residuation that €’ (y,2) < €% (x,y) = € (x,2) for all z € X, Wthh implies
that

e(y.2) < N lex(@y) = ek(z,2)].
reX

(2) Note that A, e [ (5 2) = € (2, )] < % (5, y) — ek (2,9) = €% (2,y). On
the other hand, since €’ (z,y) @ €% (y,2) < € (z,z) for all z € X, we have by
residuation that e (z,y) < % (y,x) — €% (z,z) for all x € X, Which implies

that

(3) Note that A,cy [e(z,y) = e (@,2)] < ei(y.y) = ek(y,2) = ex(y,2).
On the other hand, s1nce ee(y,2) @ el (2, y) S el (z,2) for all z € X, we have
by residuation that el (y, z) ) for all x € X, which implies
that

ey, 2) <\ [ei(e,y) = el (z,2)] .

(4) Note that A,ex [e(y,2) = el (. 2)] < ehe(ny) = k(1) = e (2,0).
On the other hand, since e’ (y,z) ® ek (z,y) < e (z,x) for all € X, we have
by residuation that ek (z,y) < el (y,x) = ek (z,x) for all z € X, which implies
that

(zy) < N [exly,2) = e(z,2)] .
zeX
U

Theorem 3.4. Let (X eX,eX) be a bi-partially ordered set. LetY C X. Let
A€ LY. Then the following hold.

(1) Npex [i72(A)(2) = ek (2, 2)] = Aoy [AYy) = € (y, 2)] for all z € X.
(2) Apex lir (A)( ) — e (z,2)] = /\yg [A(y) — €% (z,y)] for all z € X.
(3) Avex [ir (A _>6X$Z] e [A()—>6 ( z)] forall z € X.
(4) Asex [’7 ) = e (z, 96)] yey [ (y) y)] forall z € X.

Proof. (1) Note that

Neex liri(A)(2) = ex (2, 2)] = Npex [\/yey [k (z,y) © A(y)] = e (x, 2)
= Naex Nyev [lex (@,9) © A(y)] = e (2,2)] (by Lemma 2.2(2))
= Naex Nyev [AWY) = [ex (2, y) = e (x, 2)]] (by Lemma 2.2(3))
Nyev [AW) = Naex [k (2,y) = ek (x, 2)]] (by Lemma 2.2(2))
Nyey [Aly) = €x(y,2)] (by Lemma 3.3(1)).
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(2) Note that

Naex 177 (A) (@) = e (2,2)] = NAsex [\/yey [A(y) © ek (y, )] = €k (2, )
= Noex Nyey [[A(y) © e (y,2)] = e (z,2)] (by Lemma 2.2(2))

= Nuex Nyey [Aly) = ek (y, ) — ek (z,2)]] (by Lemma 2.2(3))

= Nyevy [A(y) = Nex €% (Y, 2) = €% (z,)]] (by Lemma 2.2(2))

= Nyev [A(y) = e (2,y)] (by Lemma 3.3(2)).

(3) Note that

Neex [ii (@) = e (@,2)] = Aex [v v [AW) © e (,9)] = el (2, 2)]
= /\IEX /\er H ( ) x’y)] ( ’Z)} by Lemma, 2. 2( ))
—Arex Aoy (A [ek (19) (=) (by Lemma 2(3)
= /\er [ (y) — /\weX [elX( JY) — eX(x )%] (by Lemma 2.2(2))

= Nyevy [A(y) — €l (y,2)] (by Lemma 3.3(3))
(4) Note that

Acex i (A)(2) = ek (0] = Auex [Viey [ehl0:) © AW)] = eiz,a)]
= Neex /\er HG{X( T)© A(y)] ely (2 737)} (by Lemma 2.2(2))
= Auex Ayey [A(y) = [ei (y,2) = e (z,2)]] (by Lemma 2.2(3))

/\ [ :>/\w€X [ Le( ,x)éex(z )H (by Lemma 2.2(2))
— Aoe [()#ex(zy)ﬂy Lemma 3.3(4)).

O

e
()% (). ()" (%), : X = L by

&
(%) (W) =ex(w.2),  (ek), (W) =ek(@,),
(e{X)w (y) = elX(y,aﬁ), (erX)x (y) = 6;((58, y)
where y € X.
Let (e%)" |y, (elX)z ly, (efx)m ly and (e%), |y be the restrictions to Y of
(e5)", (e),, (el)” and (e%),, respectively.
Theorem 3.5. Let (X, e, ely) be a bi-partially ordered set. Let Y C X. Then
the following hold.
(1) Y is an r-join-dense in X if and only if v = | |4, ((e%)" |y) for allz € X.
(2) Y is an r-meet-dense in X if and only if v = 1,337 ((e%), |y) for allz € X.
(3) Y is an l-join-dense in X if and only if x =| |, zl* ((elX)x ly) forallz € X.
(4) Y is an l-meet-dense in X if and only if x = Myi; = ((ey ) ly) forallz € X.

Proof. (1) Assume that Y is an r-join-dense in X. Let z € X. Then there exists
A € LY such that z = | |,.i;2(A). By (RJ1), we have

i (A)(t) <ex(t,z) forallte X. (1)
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By (RJ2), Apex [ (A)(w) = e (w,t)] < e (z,t) for all t € X. Since

Nwex lirs(A)(w) = ek (w,t)] = \ ey [Aly) = € (y,t)] by Theorem 3.4(1),
we have

N [A) = ex(y,1)] < ex(a,t) forallte X, (2)
yey

Note that

ly) (w) = e (w, 2)]

Nyey [ lv) (y) = € (y, 2)] (by Theorem 3.4(1))

Nyey [k (y; @) = e (y, 2)]

Nyey [i5( ) y) = e (y,2)] (by Eq. (1) and Lemma 2.2(1))

Nyey Viey [ex (y,t) © A(t)] = ek (y,2)]

Nyey Niey ek (y, 1) © A()] = € (y, )] (by Lemma 2.2(2))
[A(t) = [ex (y,t) = € (y,2)]] (by Lemma 2.2(3))

= Nvev [AD) = Ay [€5(5.8) = 5 (5.)]] (by Lemma 2.2(2))

= Niey [A(t) = € (t,2)] (by Lemma 3.3(1))
<e(z,2)( by Eq. (2

weX [Z ( 67qX)
T
ye

1 T T VAN | B
“‘)2
fb

/\yGY /\tEY

Moreover,

Therefore z = | | i, ((€%)" |y)-

T UTk
The converse is trivial.

(2) Assume that Y is an r-meet-dense in X. Let z € X. Then there exists
A € LY such that z = M,i*7(A). By (RM1), we have

i (A)() < ey (x,t) forallt € X. (3)

By (RM2), A cx [ (A)(w) — e (t,w)] < e (t,z) for all t € X. Since

Nwex li77 (A)(w) = e (t,w)] = A\ ey [A(y) = € (¢, y)] by Theorem 3.4(2),
we have

N\ [Aly) = ex(t,y)] < ex(t, ) for all t € X. (4)

yeYy
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Note that

- e (z,y)] (by Theorem 3.4(2))
ex (z,y) = ex(z,y)] (by Lemma 3.3(2))
i ( z,y)] (by Eq. (3) and Lemma 2.2(1))
ty)]

— e (2,9)]
— €% (z,y)] (by Lemma 2.2(2))

] )
Avey Ny [A() = [ (t.9) — ek ()] (by Lemma 2.2(3))
= Neev [A®) = ey 5 (1) = €5 (z,)]| (by Lemma 2.2(2))
= Niey [A(t) = e (2,t)] (by Lemma 3.3(2))

< e (2,2) (by Eq. (4)).

Moreover,

| I 1 VAN | R (-
S
m
=

~—
—
H»
<

Therefore z = 1,457 ((e%), |v)-

The converse is trivial.
(3) Assume that Y is an I-join-dense in X. Let € X. Then there exists A € LY
such that « = | |, ;7 (A). By (LJ1), we have

i (t) = el (t,x) for all t € X. (5)
By (LJ2), Ayex [ (A)(w) = e (w,t)] < el (x,t) for all £ € X. Since

Awex i (A)(w) = iy (w,1)] = A, ey [A(y) = e (4,1)] by Theorem 3.4(3),

we have

/\ [A(y) = e (y,1)] < e (a,t)for all t € X. (6)
yey
Note that
Auex [ ()7 Iy) (w) = ely(w, )]
= /\er [((BZX) |Y) (y) — elx (v, Z)] (by Theorem 3.4(3))
= Nyev [e (v, 2) = ek (y,2)]
< Nyey i (A)(y) = ek (y,2)] (by Eq (5) and Lemma 2.2(1))
= /\er [\/tGY [A(t) © ek (y,t)} - @X Z)]
= Nyey Niey [[A®) ® el (y, )] — eX (y,2)| (by Lemma 2.2(2))
= Nyey Ney [A(t) = [ely(y,t) = €l (y,2)]] (by Lemma 2.2(3))
= Niey {A(t) = Nyey [el (y, 1) = € (y,2)] | (by Lemma 2.2(2))
Niey [A(t) = elX (t, z)] (by Lemma 3.3(3))
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Moreover,
il ((e5)"Iy) () =Vyey [(e)" Iy (y) © ek (w,y)]
=V,ev ek (y,2) © ek (w,y)]
< elX w, x).
Therefore = = | |, 477 ((e%)” |v)-

The converse is trivial.
(4) Assume that Y is an l-meet-dense in X. Let € X. Then there exists
A € LY such that x = M;i; 7 (A). By (LM1), we have
i (A)(t) < ely(xz,t) for all t € X. (7)
By (LM2), A,cx [i77 (A)(w) = e (t,w)] < ey (t,2) for all t € X. Since
b's

i
Nwex [i77 (A)(w) = e (t,w)] = Nyey [A(y) = €!s(t,y)] by Theorem 3.4(4),
we have

/\ [A(y) = el (t, y)] < el (t,z) for all t € X. (8)
yey
Note that

Aucx i (), 1) (w) = el )]

/\er [((elx)x |y) (y) = elX (z,y)] (by Theorem 3.4(4))
= Ayey ek (@,y) = ek (2,9)]
< /\er [Z?H(A)(y) = elX(z,y)] (by Eq. (7) and Lemma 2.2(1))
= /\er [\/tEY [elX (t’ y) @ A(t)} = e{){(zvy)]
= Nyey Neey [k (ty) © A(t)] = €y (2, y)] (by Lemma 2.2(2))
= Nyev Niey [A(t) = [e(t,y) = e (2,9)]] (by Lemma 2.2(3))
= Niev [A®) = Ayey [k (t.) = el (2,)] ] (by Lemma 2.2(2))

=
= Niey A1) = elX(z,t)] (by Lemma 3.3(4))
< e (z,2) (by Eq. (8)).

Moreover,
Zzﬁ_> ((elX)m |Y> (w) = Ver [elX(va) © (elX)w|Y(y)]
= Vyey ek (¥, w) © ex(z,y)]
< el (z,w)
Therefore x = M}~ ((elx)x |y) O

By Lemma 2.5 and Theorems 3.4-3.5, we have the following.

Theorem 3.6. Let (X, e, ely) be a bi-partially ordered set. Let Y C X. Then
the following hold.

(1) Y is an r-join-dense in X if and only if N\, oy [ (y,2) = €k (y,2)] =
e (x,z) forallx,z € X.

(2) Y is an r-meet-dense in X if and only if \ oy [ (2, y) = ek (2,y)] =
e (z,z) forall xz,z € X.
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(3) Y is an l-join-dense in X if and only if N\, oy el (y, @) — e (y,2)]

e (2,2) for allz,z € X.

(4) Y is an l-meet-dense in X if and only if N\, oy el (z,y) = e (2,9)]

el (z,z) for all z,2 € X.
Proof. (1) By Theorem 3.5(1), Y is an r-join-dense in X if and only if
T = |_|z,i ((e%)" |y) forallz € X,
T

which is equivalent by Lemma 2.5(1) that

/\ [i ((e%)" |ly) (w) = e (w,2)] = e (z,2) for all z,2 € X,
weX
which is equivalent by Theorem 3.4(1) that

/\ e (y,x) = ex(y,2)] = ek (z,z) for all z,z € X.
yey
(2) By Theorem 3.5(2), Y is an r-meet-dense in X if and only if
x =0 ((e%), |y) forall z € X,
which is equivalent by Lemma 2.5(2) that

N 17 (%), [y) (w) = e (z,w)] = e (z,2) for all 2,z € X,
weX

which is equivalent by Theorem 3.4(2) that

/\ e (z,y) = €% (2,y)] = e (z,z) for all x,z € X.
yey

(3) By Theorem 3.5(3), Y is an [-join-dense in X if and only if
z = |_|zl_*) ((elX)w |y) for all z € X,
!

which is equivalent by Lemma 2.5(3) that

/\ [zf ((elx)ac |y> (w) — elX(w,z)} =el(x,2)forall z,z € X,

weX
which is equivalent by Theorem 3.4(3) that

/\ [e (y,2) = e (y,2)] = ey (z,2)for all 2,z € X.
yey

(4) By Theorem 3.5(4), Y is an l-meet-dense in X if and only if
x ="~ ((elx):C ly) forall z € X,

which is equivalent by Lemma 2.5(4) that

/\ [i;~ ((elX)z ly) (w) = e (2,w)] = el (z,2) for all 7,z € X,
weX
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which is equivalent by Theorem 3.4(4) that

/\ [elx(x, y) = efX(z,y)} = elX(z,x) for all z,z € X.
yey

O

Example 3.7. Let K = {(z,y) € R? | z > 0} be a set where R is the set of all
real numbers. Define a binary operation ® : K X K — K by (21,y1) ® (22, y2) =
(122, 21y2 + y1). Then one can see that (K,®) is a non-commutative group
where e = (1,0) is the identity and (z,y)~! = (,—%) for all (z,y) € K.

Let P = {(a,b) € R?* | (1<a)or (a=1and0<b)}. One can see that
PNP1t={1,00}, P PCP,(a,b)"' ®P® (a,b) = P for all (a,b) € K and
PUP! =K. Then P is a positive cone of K.

For all (z1,y1), (z2,y2) € K, define

(z1,y1) < (z2,9y2)  if (w1,y1)7 @ (z2,92) € P.

Then (K, <,®) is a lattice-group (see [3, 4]). Note that (z1,y1) < (2,y2) if and
only if either (1 < z3) or (x1 = 25 and y; < y2).

Let L = {(z,y) € K| (3,1) < (z,y) <(1,0)}. Define three binary opera-
tions ®, =, =: L x L — L by

(z1,91) © (22,92) = [(71,y1) ® (T2, 92)] V (%7 ) = (122, 21Y2 + Y1) V (%, 1) )
(‘rhyl) = (5327112) = [(xlayl $27y2 ] ( = %u %) A (170)7
¢ ZQW%HMMQW

Z1

(x1,91) = (22,92) = [(96273/2 (w1,91) ]

One can see that the structure (L, ®,=,—, (%, 1) , (1, 0)) is a generalized resid-
uated lattice where | = (%, 1) is the least element and T = (1,0) is the greatest
element.

Let X = {a,b,c} be a set. Define €%, ek : X x X — L by

(59 9 @) ( 9 G
TAED et o) Ld-) AR o

One can check that €% is an r-partial order and el is an [-partial order. Hence
(X ek, elX) is a bi-partially ordered set. But ey is not an l-partial order because
¢ (c.0) © e (b <) £ ek (b,a)
(1) Let Y = {a,b}. Let i : Y — X be the inclusion map.

By Theorem 3.6(1), Y is an r-join-dense in X if and only if

/\ e (y,x) = e (y,2)] = ek (z,2) for all z,z € X. 9)
yey

By a direct computation, one can see that Eq. (9) holds. Hence Y is an r-join-
dense in X.
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By Theorem 3.6(3), Y is an [-join-dense in X if and only if

/\ lel (v, 2) = e (y,2)] = e (z,2) forall 7,z € X. (10)
yey
Since
Nyey el (y, c) — e (y,b)] [e;X a,c) — e (a,b) /\()[elX(b, c) — el (b,b)]
[(467_ ) (3a_1)]/\[(77_1) - (170)]
= (57 7)
and el (c,b) = (£,-2), Eq. (10) does not hold. Hence Y is not an [-join-dense
in X.

(2) Let U = {a,c}. Let i : U — X be the inclusion map.
By Theorem 3.6(1), U is an r-join-dense in X if and only if

/\ [ (y,x) = ex(y,2)] = ek (z,2) for all z,z € X. (11)
yeU
Since
Nyeu lex (,0) = ek (y,a)] =[x (a,b) = ek (a,a)] A [ex (¢,b) = ek (c,a)]
=[(§,-5) = (LOIA[(F,—F) = (5, %)]

— (1,0)

and e’ (b,a) = (2,2), Eq. (11) does not hold. Hence U is not an r-join-dense in
X.
By Theorem 3.6(3), U is an [-join-dense in X if and only if

/\ e L (y, ) — e (y, z)] = el (z,z)for all z,z € X. (12)
yeU

(
and ek (b,a) = (3,-1), Eq. (12) does not hold. Hence U is not an l-join dense
in X.
4. Conclusion

Throughout these concepts introduced in this paper, we have investigated the
characteristics of bi-partially ordered sets on complete generalized residuated
lattices. In the future, we might to investigate various completions on these
spaces.
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