# VARIOUS DENSES INDUCED BY BI-PARTIALLY ORDERED SETS ${ }^{\dagger}$ 

JU-MOK OH


#### Abstract

We introduce the concepts of right join-dense, right meetdense, left join-dense and left meet-dense induced by bi-partially ordered sets on complete generalized residuated lattices. We investigate properties of these concepts and give an example related to them.

AMS Mathematics Subject Classification : 03E72, 54A40, 54B10. Key words and phrases : Generalized residuated lattices, bi-partially ordered sets, right join-dense, right meet-dense, left join-dense, left meetdense.


## 1. Introduction

In this paper, we propose the concepts that characterize bi-partially ordered sets on complete generalized residuated lattices, namely right join-dense, right meet-dense, left join-dense, and left meet-dense. We conduct a comprehensive investigation into the properties of these concepts, and provide a relevant example related to them. The purpose of the paper is to contribute to the understanding of the structural and behavioral characteristics of bi-partially ordered sets on complete generalized residuated lattices through the exploration of these concepts.

## 2. Preliminaries

In this section, we present some preliminary concepts and properties.
Definition 2.1. $[2,6,7,8,9]$ A structure $(L, \vee, \wedge, \odot, \rightarrow, \Rightarrow, \perp, \top)$ is called a generalized residuated lattice if it satisfies the following three conditions: (GR1) $(L, \vee, \wedge, \top, \perp)$ is bounded where $\top$ is the upper bound and $\perp$ is the universal lower bound,

[^0](GR2) $(L, \odot, \top)$ is a monoid where $\top$ is the identity,
(GR3) it satisfies a residuation ; i.e., $a \odot b \leq c$ if and only if $a \leq b \rightarrow c$ if and only if $b \leq a \Rightarrow c$.

In this paper, we always assume that $(L, \wedge, \vee, \odot, \rightarrow, \Rightarrow, \top, \perp)$ is a complete generalized residuated lattice.

Lemma 2.2. $[1,4,5,6,8]$ Let $x, y, z \in L$. Let $\left\{x_{i}\right\}_{i \in \Gamma},\left\{y_{i}\right\}_{i \in \Gamma} \subseteq L$. Then the following hold.
(1) If $y \leq z$, then $x \odot y \leq x \odot z, x \rightarrow y \leq x \rightarrow z, z \rightarrow x \leq y \rightarrow x, x \Rightarrow y \leq x \Rightarrow z$ and $z \Rightarrow x \leq y \Rightarrow x$.
(2)

$$
\begin{array}{ll}
x \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right) & =\bigwedge_{i \in \Gamma}\left(x \rightarrow y_{i}\right),\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y\right) \\
\left(\bigvee_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right) & \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right),\left(\bigwedge_{i \in \Gamma} x_{i}\right) \rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right) \geq \bigwedge_{i \in \Gamma}\left(x_{i} \rightarrow y_{i}\right) \\
x \Rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right) & =\bigwedge_{i \in \Gamma}\left(x \Rightarrow y_{i}\right),\left(\bigvee_{i \in \Gamma} x_{i}\right) \Rightarrow y=\bigwedge_{i \in \Gamma}\left(x_{i} \Rightarrow y\right) \\
\left(\bigvee_{i \in \Gamma} x_{i}\right) \Rightarrow\left(\bigvee_{i \in \Gamma} y_{i}\right) & \geq \bigwedge_{i \in \Gamma}\left(x_{i} \Rightarrow y_{i}\right),\left(\bigwedge_{i \in \Gamma} x_{i}\right) \Rightarrow\left(\bigwedge_{i \in \Gamma} y_{i}\right) \geq \bigwedge_{i \in \Gamma}\left(x_{i} \Rightarrow y_{i}\right) \\
(3)(x \odot y) \rightarrow z=x \rightarrow(y \rightarrow z) \text { and }(x \odot y) \Rightarrow z=y \Rightarrow(x \Rightarrow z)
\end{array}
$$

Definition 2.3. [5, 6] Let $X$ be a set. A map $e_{X}^{r}: X \times X \rightarrow L$ is called an $r$-partial order (or right-partial order) if it satisfies the following three conditions :
(O1) $e_{X}^{r}(x, x)=\top$ for all $x \in X$,
(O2) If $e_{X}^{r}(x, y)=e_{X}^{r}(y, x)=\top$ where $x, y \in X$, then $x=y$,
(R) $e_{X}^{r}(x, y) \odot e_{X}^{r}(y, z) \leq e_{X}^{r}(x, z)$ for all $x, y, z \in X$.

A map $e_{X}^{l}: X \times X \rightarrow L$ is called an l-partial order (or left partial order) if it satisfies the following three conditions :
(O1) $e_{X}^{l}(x, x)=\mathrm{T}$ for all $x \in X$,
(O2) If $e_{X}^{l}(x, y)=e_{X}^{l}(y, x)=\top$ where $x, y \in X$, then $x=y$,
(L) $e_{X}^{l}(y, z) \odot e_{X}^{l}(x, y) \leq e_{X}^{l}(x, z)$ for all $x, y, z \in X$.

The triple $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ is called a bi-partially ordered set.
Definition 2.4. [6] Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $A \in L^{X}$. (1) A point $x_{0}$ is called an $r$-join (or right-join) of $A$, denoted by $x_{0}=\sqcup_{r} A$, if it satisfies
(RJ1) $A(x) \leq e_{X}^{r}\left(x, x_{0}\right)$ for all $x \in X$,
(RJ2) $\bigwedge_{x \in X}\left[A(x) \Rightarrow e_{X}^{r}(x, y)\right] \leq e_{X}^{r}\left(x_{0}, y\right)$ for all $y \in X$.
(2) A point $x_{1}$ is called an $r$-meet (or right-meet) of $A$, denoted by $x_{1}=\sqcap_{r} A$, if it satisfies
(RM1) $A(x) \leq e_{X}^{r}\left(x_{1}, x\right)$ for all $x \in X$,
(RM2) $\bigwedge_{x \in X}\left[A(x) \rightarrow e_{X}^{r}(y, x)\right] \leq e_{X}^{r}\left(y, x_{1}\right)$ for all $y \in X$.
(3) A point $x_{0}$ is called an $l$-join (or left-join) of $A$, denoted by $x_{0}=\sqcup_{l} A$, if it satisfies
(LJ1) $A(x) \leq e_{X}^{l}\left(x, x_{0}\right)$ for all $x \in X$,
$($ LJ2 $) \bigwedge_{x \in X}\left[A(x) \rightarrow e_{X}^{l}(x, y)\right] \leq e_{X}^{l}\left(x_{0}, y\right)$ for all $y \in X$.
(4) A point $x_{1}$ is called an $l$-meet (or left-meet) of $A$, denoted by $x_{1}=\sqcap_{l} A$, if it satisfies
(LM1) $A(x) \leq e_{X}^{l}\left(x_{1}, x\right)$ for all $x \in X$,
(LM2) $\bigwedge_{x \in X}\left[A(x) \Rightarrow e_{X}^{l}(y, x)\right] \leq e_{X}^{l}\left(y, x_{1}\right)$ for all $y \in X$.
(5) $X$ is $r$-join complete (resp. $r$-meet complete) if there exists $\sqcup_{r} A$ (resp. $\sqcap_{r} A$ ) for all $A \in L^{X}$.
(6) $X$ is $l$-join complete (resp. l-meet complete) if there exists $\sqcup_{l} A$ (resp. $\sqcap_{l} A$ ) for all $A \in L^{X}$.

Lemma 2.5. [6] Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $x_{0}, x_{1} \in X$. Let $A \in L^{X}$. Then the following hold.
(1) $x_{0}=\sqcup_{r} A$ if and only if $\bigwedge_{x \in X}\left[A(x) \Rightarrow e_{X}^{r}(x, y)\right]=e_{X}^{r}\left(x_{0}, y\right)$ for all $y \in X$.
(2) $x_{1}=\square_{r} A$ if and only if $\bigwedge_{x \in X}\left[A(x) \rightarrow e_{X}^{r}(y, x)\right]=e_{X}^{r}\left(y, x_{1}\right)$ for all $y \in X$.
(3) $x_{0}=\sqcup_{l} A$ if and only if $\bigwedge_{x \in X}\left[A(x) \rightarrow e_{X}^{l}(x, y)\right]=e_{X}^{l}\left(x_{0}, y\right)$ for all $y \in X$.
(4) $x_{1}=\sqcap_{l} A$ if and only if $\bigwedge_{x \in X}\left[A(x) \Rightarrow e_{X}^{l}(y, x)\right]=e_{X}^{l}\left(y, x_{1}\right)$ for all $y \in X$.
(5) $\sqcup_{r} A, \sqcap_{r} A, \sqcup_{l} A$ and $\sqcap_{l} A$ are unique if each exists.

## 3. Various denses on generalized residuated lattices

Definition 3.1. [6] Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ and $\left(Y, e_{Y}^{r}, e_{Y}^{l}\right)$ be bi-partially ordered sets. Let $f: X \rightarrow Y$ be a map. Define four maps $f_{r *}^{\rightarrow}, f_{r}^{* \rightarrow}, f_{l *}^{\rightarrow}, f_{l}^{* \rightarrow}: L^{X} \rightarrow L^{Y}$ by

$$
\begin{aligned}
f_{r *}^{\rightarrow}(A)(y) & =\bigvee_{x \in X}\left[e_{Y}^{r}(y, f(x)) \odot A(x)\right], \\
f_{r}^{* \rightarrow}(A)(y) & =\bigvee_{x \in X}\left[A(x) \odot e_{Y}^{r}(f(x), y)\right], \\
f_{l *}^{\rightarrow}(A)(y) & =\bigvee_{x \in X}\left[A(x) \odot e_{Y}^{l}(y, f(x))\right], \\
f_{l}^{* \rightarrow}(A)(y) & =\bigvee_{x \in X}\left[e_{Y}^{l}(f(x), y) \odot A(x)\right]
\end{aligned}
$$

where $A \in L^{X}$.
Definition 3.2. Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $Y \subseteq X$. Let $i: Y \rightarrow X$ be the inclusion map.
(1) $Y$ is called an $r$-join-dense (or right join-dense) in $X$ if for all $x \in X$, there exists $A \in L^{Y}$ such that $x=\bigsqcup_{r} i_{r *}^{\rightarrow}(A)$.
(2) $Y$ is called an $r$-meet-dense (or right meet-dense) in $X$ if for all $x \in X$, there exists $A \in L^{Y}$ such that $x=\square_{r} i_{r}^{* \rightarrow}(A)$.
(3) $Y$ is called an l-join-dense (or left join-dense) in $X$ if for all $x \in X$, there exists $A \in L^{Y}$ such that $x=\bigsqcup_{l} i_{l *}(A)$.
(4) $Y$ is called an $l$-meet-dense (or left meet-dense) in $X$ if for all $x \in X$, there exists $A \in L^{Y}$ such that $x=\sqcap_{l} i_{l}^{* \rightarrow}(A)$.

Lemma 3.3. Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Then the following hold.
(1) $\bigwedge_{x \in X}\left[e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)\right]=e_{X}^{r}(y, z)$ for all $y, z \in X$.
(2) $\bigwedge_{x \in X}\left[e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)\right]=e_{X}^{r}(z, y)$ for all $y, z \in X$.
(3) $\bigwedge_{x \in X}\left[e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)\right]=e_{X}^{l}(y, z)$ for all $y, z \in X$.
(4) $\bigwedge_{x \in X}\left[e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)\right]=e_{X}^{l}(z, y)$ for all $y, z \in X$.

Proof. (1) Note that $\bigwedge_{x \in X}\left[e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)\right] \leq e_{X}^{r}(y, y) \Rightarrow e_{X}^{r}(y, z)=e_{X}^{r}(y, z)$. On the other hand, since $e_{X}^{r}(x, y) \odot e_{X}^{r}(y, z) \leq e_{X}^{r}(x, z)$ for all $x \in X$, we have by residuation that $e_{X}^{r}(y, z) \leq e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)$ for all $x \in X$, which implies that

$$
e_{X}^{r}(y, z) \leq \bigwedge_{x \in X}\left[e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)\right]
$$

(2) Note that $\bigwedge_{x \in X}\left[e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)\right] \leq e_{X}^{r}(y, y) \rightarrow e_{X}^{r}(z, y)=e_{X}^{r}(z, y)$. On the other hand, since $e_{X}^{r}(z, y) \odot e_{X}^{r}(y, x) \leq e_{X}^{r}(z, x)$ for all $x \in X$, we have by residuation that $e_{X}^{r}(z, y) \leq e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)$ for all $x \in X$, which implies that

$$
e_{X}^{r}(z, y) \leq \bigwedge_{x \in X}\left[e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)\right]
$$

(3) Note that $\bigwedge_{x \in X}\left[e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)\right] \leq e_{X}^{l}(y, y) \rightarrow e_{X}^{l}(y, z)=e_{X}^{l}(y, z)$. On the other hand, since $e_{X}^{l}(y, z) \odot e_{X}^{l}(x, y) \leq e_{X}^{l}(x, z)$ for all $x \in X$, we have by residuation that $e_{X}^{l}(y, z) \leq e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)$ for all $x \in X$, which implies that

$$
e_{X}^{l}(y, z) \leq \bigwedge_{x \in X}\left[e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)\right]
$$

(4) Note that $\bigwedge_{x \in X}\left[e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)\right] \leq e_{X}^{l}(y, y) \Rightarrow e_{X}^{l}(z, y)=e_{X}^{l}(z, y)$. On the other hand, since $e_{X}^{l}(y, x) \odot e_{X}^{l}(z, y) \leq e_{X}^{l}(z, x)$ for all $x \in X$, we have by residuation that $e_{X}^{l}(z, y) \leq e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)$ for all $x \in X$, which implies that

$$
e_{X}^{l}(z, y) \leq \bigwedge_{x \in X}\left[e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)\right]
$$

Theorem 3.4. Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $Y \subseteq X$. Let $A \in L^{Y}$. Then the following hold.
(1) $\bigwedge_{x \in X}\left[i_{r *}^{\rightarrow}(A)(x) \Rightarrow e_{X}^{r}(x, z)\right]=\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{r}(y, z)\right]$ for all $z \in X$.
(2) $\bigwedge_{x \in X}\left[i_{r}^{* \rightarrow}(A)(x) \rightarrow e_{X}^{r}(z, x)\right]=\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{r}(z, y)\right]$ for all $z \in X$.
(3) $\bigwedge_{x \in X}\left[i_{l *}^{\vec{*}}(A)(x) \rightarrow e_{X}^{l}(x, z)\right]=\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{l}(y, z)\right]$ for all $z \in X$.
(4) $\bigwedge_{x \in X}\left[i_{l}^{* \rightarrow}(A)(x) \Rightarrow e_{X}^{l}(z, x)\right]=\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{l}(z, y)\right]$ for all $z \in X$.

Proof. (1) Note that

$$
\begin{aligned}
& \bigwedge_{x \in X}\left[i_{r *}^{\rightarrow}(A)(x) \Rightarrow e_{X}^{r}(x, z)\right]=\bigwedge_{x \in X}\left[\bigvee_{y \in Y}\left[e_{X}^{r}(x, y) \odot A(y)\right] \Rightarrow e_{X}^{r}(x, z)\right] \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[\left[e_{X}^{r}(x, y) \odot A(y)\right] \rightarrow e_{X}^{r}(x, z)\right](\text { by Lemma 2.2(2)) } \\
& \left.=\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[A(y) \Rightarrow\left[e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)\right]\right]\right) \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \Rightarrow \bigwedge_{x \in X}\left[e_{X}^{r}(x, y) \Rightarrow e_{X}^{r}(x, z)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{r}(y, z)\right](\text { by Lemma 3.3(1)). }
\end{aligned}
$$

(2) Note that
$\bigwedge_{x \in X}\left[i_{r}^{* \rightarrow}(A)(x) \rightarrow e_{X}^{r}(z, x)\right]=\bigwedge_{x \in X}\left[\bigvee_{y \in Y}\left[A(y) \odot e_{X}^{r}(y, x)\right] \rightarrow e_{X}^{r}(z, x)\right]$
$=\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[\left[A(y) \odot e_{X}^{r}(y, x)\right] \rightarrow e_{X}^{r}(z, x)\right]$ (by Lemma 2.2(2))
$=\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[A(y) \rightarrow\left[e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)\right]\right]$ (by Lemma 2.2(3))
$=\bigwedge_{y \in Y}\left[A(y) \rightarrow \bigwedge_{x \in X}\left[e_{X}^{r}(y, x) \rightarrow e_{X}^{r}(z, x)\right]\right]$ (by Lemma 2.2(2))
$=\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{r}(z, y)\right]($ by Lemma 3.3(2)).
(3) Note that

$$
\begin{aligned}
& \bigwedge_{x \in X}\left[i_{l *}(A)(x) \rightarrow e_{X}^{l}(x, z)\right]=\bigwedge_{x \in X}\left[\bigvee_{y \in Y}\left[A(y) \odot e_{X}^{l}(x, y)\right] \rightarrow e_{X}^{l}(x, z)\right] \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[\left[A(y) \odot e_{X}^{l}(x, y)\right] \rightarrow e_{X}^{l}(x, z)\right] \quad(\text { by Lemma 2.2(2)) } \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[A(y) \rightarrow\left[e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \rightarrow \bigwedge_{x \in X}\left[e_{X}^{l}(x, y) \rightarrow e_{X}^{l}(x, z)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{l}(y, z)\right](\text { by Lemma 3.3(3)). }
\end{aligned}
$$

(4) Note that

$$
\begin{aligned}
& \bigwedge_{x \in X}\left[i_{l *}^{\rightarrow}(A)(x) \Rightarrow e_{X}^{l}(z, x)\right]=\bigwedge_{x \in X}\left[\bigvee_{y \in Y}\left[e_{X}^{l}(y, x) \odot A(y)\right] \Rightarrow e_{X}^{l}(z, x)\right] \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[\left[e_{X}^{l}(y, x) \odot A(y)\right] \Rightarrow e_{X}^{l}(z, x)\right] \quad(\text { by Lemma 2.2(2)) } \\
& =\bigwedge_{x \in X} \bigwedge_{y \in Y}\left[A(y) \Rightarrow\left[e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \Rightarrow \bigwedge_{x \in X}\left[e_{X}^{l}(y, x) \Rightarrow e_{X}^{l}(z, x)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{l}(z, y)\right](\text { by Lemma 3.3(4)). }
\end{aligned}
$$

Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $x \in X$. Define four maps $\left(e_{X}^{r}\right)^{x},\left(e_{X}^{l}\right)_{x},\left(e_{X}^{l}\right)^{x},\left(e_{X}^{r}\right)_{x}: X \rightarrow L$ by

$$
\begin{array}{rlr}
\left(e_{X}^{r}\right)^{x}(y)=e_{X}^{r}(y, x), & \left(e_{X}^{l}\right)_{x}(y)=e_{X}^{l}(x, y), \\
\left(e_{X}^{l}\right)^{x}(y)=e_{X}^{l}(y, x), & \left(e_{X}^{r}\right)_{x}(y)=e_{X}^{r}(x, y)
\end{array}
$$

where $y \in X$.
Let $\left.\left(e_{X}^{r}\right)^{x}\right|_{Y},\left.\left(e_{X}^{l}\right)_{x}\right|_{Y},\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}$ and $\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}$ be the restrictions to $Y$ of $\left(e_{X}^{r}\right)^{x},\left(e_{X}^{l}\right)_{x},\left(e_{X}^{l}\right)^{x}$ and $\left(e_{X}^{r}\right)_{x}$, respectively.

Theorem 3.5. Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $Y \subseteq X$. Then the following hold.
(1) $Y$ is an $r$-join-dense in $X$ if and only if $x=\bigsqcup_{r} i_{r *}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)$ for all $x \in X$.
(2) $Y$ is an r-meet-dense in $X$ if and only if $x=\sqcap_{r} i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)$ for all $x \in X$.
(3) $Y$ is an $l$-join-dense in $X$ if and only if $x=\bigsqcup_{l} i_{l *}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)$ for all $x \in X$.
(4) $Y$ is an $l$-meet-dense in $X$ if and only if $x=\sqcap_{l} i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right)$ for all $x \in X$.

Proof. (1) Assume that $Y$ is an $r$-join-dense in $X$. Let $x \in X$. Then there exists $A \in L^{Y}$ such that $x=\bigsqcup_{r} i_{r^{*}}(A)$. By (RJ1), we have

$$
\begin{equation*}
i_{r^{*}}^{\vec{*}}(A)(t) \leq e_{X}^{r}(t, x) \quad \text { for all } t \in X \tag{1}
\end{equation*}
$$

By (RJ2), $\bigwedge_{w \in X}\left[i_{r^{*}}^{\rightarrow}(A)(w) \Rightarrow e_{X}^{r}(w, t)\right] \leq e_{X}^{r}(x, t)$ for all $t \in X$. Since
$\bigwedge_{w \in X}\left[i_{r^{*}}(A)(w) \Rightarrow e_{X}^{r}(w, t)\right]=\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{r}(y, t)\right]$ by Theorem 3.4(1),
we have

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{r}(y, t)\right] \leq e_{X}^{r}(x, t) \quad \text { for all } t \in X \tag{2}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \bigwedge_{w \in X}\left[i_{r *}^{\rightarrow}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)(w) \Rightarrow e_{X}^{r}(w, z)\right] \\
& =\bigwedge_{y \in Y}\left[\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)(y) \Rightarrow e_{X}^{r}(y, z)\right] \text { (by Theorem 3.4(1)) } \\
& =\bigwedge_{y \in Y}\left[e_{X}^{r}(y, x) \Rightarrow e_{X}^{r}(y, z)\right] \\
& \leq \bigwedge_{y \in Y}\left[i_{r^{*}}(A)(y) \Rightarrow e_{X}^{r}(y, z)\right] \text { (by Eq. (1) and Lemma 2.2(1)) } \\
& =\bigwedge_{y \in Y}\left[\bigvee_{t \in Y}\left[e_{X}^{r}(y, t) \odot A(t)\right] \Rightarrow e_{X}^{r}(y, z)\right] \\
& \left.=\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[e_{X}^{r}(y, t) \odot A(t)\right] \Rightarrow e_{X}^{r}(y, z)\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[A(t) \Rightarrow\left[e_{X}^{r}(y, t) \Rightarrow e_{X}^{r}(y, z)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \Rightarrow \bigwedge_{y \in Y}\left[e_{X}^{r}(y, t) \Rightarrow e_{X}^{r}(y, z)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \Rightarrow e_{X}^{r}(t, z)\right](\text { by Lemma 3.3(1)) } \\
& \leq e_{X}^{r}(x, z)(\text { by Eq. }(2)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
i_{r *}^{\rightarrow}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)(w) & =\bigvee_{y \in Y}\left[\left.e_{X}^{r}(w, y) \odot\left(e_{X}^{r}\right)^{x}\right|_{Y}(y)\right] \\
& =\bigvee_{y \in Y}\left[e_{X}^{r}(w, y) \odot e_{X}^{r}(y, x)\right] \\
& \leq e_{X}^{r}(w, x)
\end{aligned}
$$

Therefore $x=\bigsqcup_{r} i_{r *}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)$.
The converse is trivial.
(2) Assume that $Y$ is an $r$-meet-dense in $X$. Let $x \in X$. Then there exists $A \in L^{Y}$ such that $x=\sqcap_{r} i_{r}^{* \rightarrow}(A)$. By (RM1), we have

$$
\begin{equation*}
i_{r}^{* \rightarrow}(A)(t) \leq e_{X}^{r}(x, t) \text { for all } t \in X \tag{3}
\end{equation*}
$$

By (RM2), $\bigwedge_{w \in X}\left[i_{r}^{* \rightarrow}(A)(w) \rightarrow e_{X}^{r}(t, w)\right] \leq e_{X}^{r}(t, x)$ for all $t \in X$. Since

$$
\bigwedge_{w \in X}\left[i_{r}^{* \rightarrow}(A)(w) \rightarrow e_{X}^{r}(t, w)\right]=\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{r}(t, y)\right] \text { by Theorem 3.4(2) }
$$

we have

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{r}(t, y)\right] \leq e_{X}^{r}(t, x) \text { for all } t \in X \tag{4}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \bigwedge_{w \in X}\left[i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)(w) \rightarrow e_{X}^{r}(z, w)\right] \\
& =\bigwedge_{y \in Y}\left[\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)(y) \rightarrow e_{X}^{r}(z, y)\right] \text { (by Theorem 3.4(2)) } \\
& =\bigwedge_{y \in Y}\left[e_{X}^{r}(x, y) \rightarrow e_{X}^{r}(z, y)\right] \text { (by Lemma 3.3(2)) } \\
& \leq \bigwedge_{y \in Y}\left[i_{r}^{* \rightarrow}(A)(y) \rightarrow e_{X}^{r}(z, y)\right] \text { (by Eq. (3) and Lemma 2.2(1)) } \\
& =\bigwedge_{y \in Y}\left[\bigvee_{t \in Y}\left[A(t) \odot e_{X}^{r}(t, y)\right] \rightarrow e_{X}^{r}(z, y)\right] \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[\left[A(t) \odot e_{X}^{r}(t, y)\right] \rightarrow e_{X}^{r}(z, y)\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[A(t) \rightarrow\left[e_{X}^{r}(t, y) \rightarrow e_{X}^{r}(z, y)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \rightarrow \bigwedge_{y \in Y}\left[e_{X}^{r}(t, y) \rightarrow e_{X}^{r}(z, y)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \rightarrow e_{X}^{r}(z, t)\right](\text { by Lemma 3.3(2)) } \\
& \leq e_{X}^{r}(z, x)(\text { by Eq. }(4)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)(w) & =\bigvee_{y \in Y}\left[\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}(y) \odot e_{X}^{r}(y, w)\right] \\
& =\bigvee_{y \in Y}\left[e_{X}^{r}(x, y) \odot e_{X}^{r}(y, w)\right] \\
& \leq e_{X}^{r}(x, w)
\end{aligned}
$$

Therefore $x=\sqcap_{r} i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)$.
The converse is trivial.
(3) Assume that $Y$ is an $l$-join-dense in $X$. Let $x \in X$. Then there exists $A \in L^{Y}$ such that $x=\bigsqcup_{l} i_{l *}(A)$. By (LJ1), we have

$$
\begin{equation*}
i_{l^{*}}(t)=e_{X}^{l}(t, x) \text { for all } t \in X \tag{5}
\end{equation*}
$$

By (LJ2), $\bigwedge_{w \in X}\left[i_{l^{*}}(A)(w) \rightarrow e_{X}^{l}(w, t)\right] \leq e_{X}^{l}(x, t)$ for all $t \in X$. Since
$\bigwedge_{w \in X}\left[i_{l^{*}}^{\vec{*}}(A)(w) \rightarrow e_{X}^{l}(w, t)\right]=\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{l}(y, t)\right]$ by Theorem 3.4(3),
we have

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[A(y) \rightarrow e_{X}^{l}(y, t)\right] \leq e_{X}^{l}(x, t) \text { for all } t \in X \tag{6}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \bigwedge_{w \in X}\left[i_{l *}^{l_{l *}}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)(w) \rightarrow e_{X}^{l}(w, z)\right] \\
& =\bigwedge_{y \in Y}\left[\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)(y) \rightarrow e_{X}^{l}(y, z)\right] \text { (by Theorem 3.4(3)) } \\
& =\bigwedge_{y \in Y}\left[e_{X}^{l}(y, x) \rightarrow e_{X}^{l}(y, z)\right] \\
& \leq \bigwedge_{y \in Y}\left[i_{i^{*}}(A)(y) \rightarrow e_{X}^{l}(y, z)\right] \text { (by Eq. (5) and Lemma 2.2(1)) } \\
& =\bigwedge_{y \in Y}\left[\bigvee_{t \in Y}\left[A(t) \odot e_{X}^{l}(y, t)\right] \rightarrow e_{X}^{l}(y, z)\right] \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[\left[A(t) \odot e_{X}^{l}(y, t)\right] \rightarrow e_{X}^{l}(y, z)\right] \quad \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[A(t) \rightarrow\left[e_{X}^{l}(y, t) \rightarrow e_{X}^{l}(y, z)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \rightarrow \bigwedge_{y \in Y}\left[e_{X}^{l}(y, t) \rightarrow e_{X}^{l}(y, z)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \rightarrow e_{X}^{l}(t, z)\right](\text { by Lemma 3.3(3)) } \\
& \leq e_{X}^{l}(x, z)(\text { by Eq. }(6)) .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
i_{l *}^{\rightarrow}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)(w) & =\bigvee_{y \in Y}\left[\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}(y) \odot e_{X}^{l}(w, y)\right] \\
& =\bigvee_{y \in Y}\left[e_{X}^{l}(y, x) \odot e_{X}^{l}(w, y)\right] \\
& \leq e_{X}^{l}(w, x)
\end{aligned}
$$

Therefore $x=\bigsqcup_{l} i_{l *}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)$.
The converse is trivial.
(4) Assume that $Y$ is an $l$-meet-dense in $X$. Let $x \in X$. Then there exists $A \in L^{Y}$ such that $x=\Pi_{l} i_{l}^{* \rightarrow}(A)$. By (LM1), we have

$$
\begin{equation*}
i_{l}^{* \rightarrow}(A)(t) \leq e_{X}^{l}(x, t) \text { for all } t \in X \tag{7}
\end{equation*}
$$

By (LM2), $\bigwedge_{w \in X}\left[i_{l}^{* \rightarrow}(A)(w) \Rightarrow e_{X}^{l}(t, w)\right] \leq e_{X}^{l}(t, x)$ for all $t \in X$. Since
$\bigwedge_{w \in X}\left[i_{l}^{* \rightarrow}(A)(w) \Rightarrow e_{X}^{l}(t, w)\right]=\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{l}(t, y)\right]$ by Theorem 3.4(4), we have

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[A(y) \Rightarrow e_{X}^{l}(t, y)\right] \leq e_{X}^{l}(t, x) \text { for all } t \in X \tag{8}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \bigwedge_{w \in X}\left[i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right)(w) \Rightarrow e_{X}^{l}(z, w)\right] \\
& =\bigwedge_{y \in Y}\left[\left(\left(e_{X}^{l}\right)_{x} \mid Y\right)(y) \Rightarrow e_{X}^{l}(z, y)\right] \text { (by Theorem 3.4(4)) } \\
& =\bigwedge_{y \in Y}\left[e_{X}^{l}(x, y) \Rightarrow e_{X}^{l}(z, y)\right] \\
& \leq \bigwedge_{y \in Y}\left[i_{l}^{* \rightarrow}(A)(y) \Rightarrow e_{X}^{l}(z, y)\right] \text { (by Eq. (7) and Lemma 2.2(1)) } \\
& =\bigwedge_{y \in Y}\left[\bigvee_{t \in Y}\left[e_{X}^{l}(t, y) \odot A(t)\right] \Rightarrow e_{X}^{l}(z, y)\right] \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[\left[e_{X}^{l}(t, y) \odot A(t)\right] \Rightarrow e_{X}^{l}(z, y)\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{y \in Y} \bigwedge_{t \in Y}\left[A(t) \Rightarrow\left[e_{X}^{l}(t, y) \Rightarrow e_{X}^{l}(z, y)\right]\right] \text { (by Lemma 2.2(3)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \Rightarrow \bigwedge_{y \in Y}\left[e_{X}^{l}(t, y) \Rightarrow e_{X}^{l}(z, y)\right]\right] \text { (by Lemma 2.2(2)) } \\
& =\bigwedge_{t \in Y}\left[A(t) \Rightarrow e_{X}^{l}(z, t)\right](\text { by Lemma 3.3(4)) } \\
& \leq e_{X}^{l}(z, x) \text { (by Eq. (8)). }
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right)(w) & =\bigvee_{y \in Y}\left[\left.e_{X}^{l}(y, w) \odot\left(e_{X}^{l}\right)_{x}\right|_{Y}(y)\right] \\
& =\bigvee_{y \in Y}\left[e_{X}^{l}(y, w) \odot e_{X}^{r}(x, y)\right] \\
& \leq e_{X}^{l}(x, w)
\end{aligned}
$$

Therefore $x=\Pi_{l} i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right)$.
By Lemma 2.5 and Theorems 3.4-3.5, we have the following.
Theorem 3.6. Let $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ be a bi-partially ordered set. Let $Y \subseteq X$. Then the following hold.
(1) $Y$ is an r-join-dense in $X$ if and only if $\bigwedge_{y \in Y}\left[e_{X}^{r}(y, x) \Rightarrow e_{X}^{r}(y, z)\right]=$ $e_{X}^{r}(x, z)$ for all $x, z \in X$.
(2) $Y$ is an r-meet-dense in $X$ if and only if $\bigwedge_{y \in Y}\left[e_{X}^{r}(x, y) \rightarrow e_{X}^{r}(z, y)\right]=$ $e_{X}^{r}(z, x)$ for all $x, z \in X$.
(3) $Y$ is an l-join-dense in $X$ if and only if $\bigwedge_{y \in Y}\left[e_{X}^{l}(y, x) \rightarrow e_{X}^{l}(y, z)\right]=$ $e_{X}^{l}(x, z)$ for all $x, z \in X$.
(4) $Y$ is an l-meet-dense in $X$ if and only if $\bigwedge_{y \in Y}\left[e_{X}^{l}(x, y) \Rightarrow e_{X}^{l}(z, y)\right]=$ $e_{X}^{l}(z, x)$ for all $x, z \in X$.
Proof. (1) By Theorem 3.5(1), $Y$ is an $r$-join-dense in $X$ if and only if

$$
x=\bigsqcup_{r} i_{r^{*}}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right) \text { for all } x \in X
$$

which is equivalent by Lemma 2.5(1) that

$$
\bigwedge_{w \in X}\left[i_{r^{*}}\left(\left.\left(e_{X}^{r}\right)^{x}\right|_{Y}\right)(w) \Rightarrow e_{X}^{r}(w, z)\right]=e_{X}^{r}(x, z) \text { for all } x, z \in X
$$

which is equivalent by Theorem 3.4(1) that

$$
\bigwedge_{y \in Y}\left[e_{X}^{r}(y, x) \Rightarrow e_{X}^{r}(y, z)\right]=e_{X}^{r}(x, z) \text { for all } x, z \in X
$$

(2) By Theorem 3.5(2), $Y$ is an $r$-meet-dense in $X$ if and only if

$$
x=\sqcap_{r} i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right) \text { for all } x \in X
$$

which is equivalent by Lemma 2.5(2) that

$$
\bigwedge_{w \in X}\left[i_{r}^{* \rightarrow}\left(\left.\left(e_{X}^{r}\right)_{x}\right|_{Y}\right)(w) \rightarrow e_{X}^{r}(z, w)\right]=e_{X}^{r}(z, x) \text { for all } x, z \in X,
$$

which is equivalent by Theorem 3.4(2) that

$$
\bigwedge_{y \in Y}\left[e_{X}^{r}(x, y) \rightarrow e_{X}^{r}(z, y)\right]=e_{X}^{r}(z, x) \text { for all } x, z \in X
$$

(3) By Theorem 3.5(3), $Y$ is an $l$-join-dense in $X$ if and only if

$$
x=\bigsqcup_{l} i_{l *}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right) \text { for all } x \in X
$$

which is equivalent by Lemma 2.5(3) that

$$
\bigwedge_{w \in X}\left[i_{l^{*}}\left(\left.\left(e_{X}^{l}\right)^{x}\right|_{Y}\right)(w) \rightarrow e_{X}^{l}(w, z)\right]=e_{X}^{l}(x, z) \text { for all } x, z \in X
$$

which is equivalent by Theorem 3.4(3) that

$$
\bigwedge_{y \in Y}\left[e_{X}^{l}(y, x) \rightarrow e_{X}^{l}(y, z)\right]=e_{X}^{l}(x, z) \text { for all } x, z \in X
$$

(4) By Theorem 3.5(4), $Y$ is an $l$-meet-dense in $X$ if and only if

$$
x=\sqcap_{l} i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right) \text { for all } x \in X
$$

which is equivalent by Lemma 2.5(4) that

$$
\bigwedge_{w \in X}\left[i_{l}^{* \rightarrow}\left(\left.\left(e_{X}^{l}\right)_{x}\right|_{Y}\right)(w) \Rightarrow e_{X}^{l}(z, w)\right]=e_{X}^{l}(z, x) \text { for all } x, z \in X
$$

which is equivalent by Theorem 3.4(4) that

$$
\bigwedge_{y \in Y}\left[e_{X}^{l}(x, y) \Rightarrow e_{X}^{l}(z, y)\right]=e_{X}^{l}(z, x) \text { for all } x, z \in X
$$

Example 3.7. Let $K=\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$ be a set where $\mathbb{R}$ is the set of all real numbers. Define a binary operation $\otimes: K \times K \rightarrow K$ by $\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)=$ $\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right)$. Then one can see that $(K, \otimes)$ is a non-commutative group where $e=(1,0)$ is the identity and $(x, y)^{-1}=\left(\frac{1}{x},-\frac{y}{x}\right)$ for all $(x, y) \in K$.

Let $P=\left\{(a, b) \in \mathbb{R}^{2} \mid \quad(1<a)\right.$ or $(a=1$ and $\left.0 \leq b)\right\}$. One can see that $P \cap P^{-1}=\{(1,0)\}, P \otimes P \subseteq P,(a, b)^{-1} \otimes P \otimes(a, b)=P$ for all $(a, b) \in K$ and $P \cup P^{-1}=K$. Then $P$ is a positive cone of $K$.

For all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in K$, define

$$
\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right) \quad \text { if } \quad\left(x_{1}, y_{1}\right)^{-1} \otimes\left(x_{2}, y_{2}\right) \in P
$$

Then $(K, \leq, \otimes)$ is a lattice-group (see $[3,4])$. Note that $\left(x_{1}, y_{1}\right) \leq\left(x_{2}, y_{2}\right)$ if and only if either $\left(x_{1}<x_{2}\right)$ or ( $x_{1}=x_{2}$ and $y_{1} \leq y_{2}$ ).

Let $L=\left\{(x, y) \in K \left\lvert\,\left(\frac{1}{2}, 1\right) \leq(x, y) \leq(1,0)\right.\right\}$. Define three binary operations $\odot, \Rightarrow, \rightarrow: L \times L \rightarrow L$ by

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \odot\left(x_{2}, y_{2}\right)=\left[\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)\right] \vee\left(\frac{1}{2}, 1\right) & =\left(x_{1} x_{2}, x_{1} y_{2}+y_{1}\right) \vee\left(\frac{1}{2}, 1\right) \\
\left(x_{1}, y_{1}\right) \Rightarrow\left(x_{2}, y_{2}\right)=\left[\left(x_{1}, y_{1}\right)^{-1} \otimes\left(x_{2}, y_{2}\right)\right] \wedge(1,0) & =\left(\frac{x_{2}}{x_{1}}, \frac{y_{2}-y_{1}}{x_{1}}\right) \wedge(1,0) \\
\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)=\left[\left(x_{2}, y_{2}\right) \otimes\left(x_{1}, y_{1}\right)^{-1}\right] \wedge(1,0) & =\left(\frac{x_{2}}{x_{1}},-\frac{x_{2} y_{1}}{x_{1}}+y_{2}\right) \wedge(1,0)
\end{aligned}
$$

One can see that the structure $\left(L, \odot, \Rightarrow, \rightarrow,\left(\frac{1}{2}, 1\right),(1,0)\right)$ is a generalized residuated lattice where $\perp=\left(\frac{1}{2}, 1\right)$ is the least element and $\top=(1,0)$ is the greatest element.

Let $X=\{a, b, c\}$ be a set. Define $e_{X}^{r}, e_{X}^{l}: X \times X \rightarrow L$ by

$$
e_{X}^{r}=\left(\begin{array}{ccc}
(1,0) & \left(\frac{5}{8},-5\right) & \left(\frac{5}{6}, 1\right) \\
\left(\frac{5}{7}, 2\right) & (1,0) & \left(\frac{5}{6},-1\right) \\
\left(\frac{6}{7}, \frac{18}{5}\right) & \left(\frac{3}{4},-\frac{36}{5}\right) & (1,0)
\end{array}\right), e_{X}^{l}=\left(\begin{array}{ccc}
(1,0) & \left(\frac{2}{3},-1\right) & \left(\frac{5}{6},-1\right) \\
\left(\frac{4}{7},-1\right) & (1,0) & \left(\frac{6}{7},-1\right) \\
\left(\frac{2}{3},-\frac{1}{3}\right) & \left(\frac{4}{5},-\frac{9}{5}\right) & (1,0)
\end{array}\right)
$$

One can check that $e_{X}^{r}$ is an $r$-partial order and $e_{X}^{l}$ is an $l$-partial order. Hence $\left(X, e_{X}^{r}, e_{X}^{l}\right)$ is a bi-partially ordered set. But $e_{X}^{r}$ is not an l-partial order because $e_{X}^{r}(c, a) \odot e_{X}^{r}(b, c) \not \subset e_{X}^{r}(b, a)$.
(1) Let $Y=\{a, b\}$. Let $i: Y \rightarrow X$ be the inclusion map.

By Theorem 3.6(1), $Y$ is an $r$-join-dense in $X$ if and only if

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[e_{X}^{r}(y, x) \Rightarrow e_{X}^{r}(y, z)\right]=e_{X}^{r}(x, z) \text { for all } x, z \in X \tag{9}
\end{equation*}
$$

By a direct computation, one can see that Eq. (9) holds. Hence $Y$ is an $r$-joindense in $X$.

By Theorem 3.6(3), $Y$ is an $l$-join-dense in $X$ if and only if

$$
\begin{equation*}
\bigwedge_{y \in Y}\left[e_{X}^{l}(y, x) \rightarrow e_{X}^{l}(y, z)\right]=e_{X}^{l}(x, z) \text { for all } x, z \in X \tag{10}
\end{equation*}
$$

Since

$$
\begin{aligned}
\bigwedge_{y \in Y}\left[e_{X}^{l}(y, c) \rightarrow e_{X}^{l}(y, b)\right] & =\left[e_{X}^{l}(a, c) \rightarrow e_{X}^{l}(a, b)\right] \wedge\left[e_{X}^{l}(b, c) \rightarrow e_{X}^{l}(b, b)\right] \\
& =\left[\left(\frac{5}{6},-1\right) \rightarrow\left(\frac{2}{3},-1\right)\right] \wedge\left[\left(\frac{6}{7},-1\right) \rightarrow(1,0)\right] \\
& =\left(\frac{4}{5},-\frac{1}{5}\right)
\end{aligned}
$$

and $e_{X}^{l}(c, b)=\left(\frac{4}{5},-\frac{9}{5}\right)$, Eq. (10) does not hold. Hence $Y$ is not an $l$-join-dense in $X$.
(2) Let $U=\{a, c\}$. Let $i: U \rightarrow X$ be the inclusion map.

By Theorem 3.6(1), $U$ is an $r$-join-dense in $X$ if and only if

$$
\begin{equation*}
\bigwedge_{y \in U}\left[e_{X}^{r}(y, x) \Rightarrow e_{X}^{r}(y, z)\right]=e_{X}^{r}(x, z) \text { for all } x, z \in X \tag{11}
\end{equation*}
$$

Since

$$
\begin{aligned}
\bigwedge_{y \in U}\left[e_{X}^{r}(y, b) \Rightarrow e_{X}^{r}(y, a)\right] & =\left[e_{X}^{r}(a, b) \Rightarrow e_{X}^{r}(a, a)\right] \wedge\left[e_{X}^{r}(c, b) \Rightarrow e_{X}^{r}(c, a)\right] \\
& =\left[\left(\frac{5}{8},-5\right) \Rightarrow(1,0)\right] \wedge\left[\left(\frac{3}{4},-\frac{36}{5}\right) \Rightarrow\left(\frac{6}{7}, \frac{18}{5}\right)\right] \\
& =(1,0)
\end{aligned}
$$

and $e_{X}^{r}(b, a)=\left(\frac{5}{7}, 2\right)$, Eq. (11) does not hold. Hence $U$ is not an $r$-join-dense in $X$.

By Theorem 3.6(3), $U$ is an $l$-join-dense in $X$ if and only if

$$
\begin{equation*}
\bigwedge_{y \in U}\left[e_{X}^{l}(y, x) \rightarrow e_{X}^{l}(y, z)\right]=e_{X}^{l}(x, z) \text { for all } x, z \in X \tag{12}
\end{equation*}
$$

Since

$$
\begin{aligned}
\bigwedge_{y \in U}\left[e_{X}^{l}(y, b) \rightarrow e_{X}^{l}(y, a)\right] & =\left[e_{X}^{l}(a, b) \rightarrow e_{X}^{l}(a, a)\right] \wedge\left[e_{X}^{l}(c, b) \rightarrow e_{X}^{l}(c, a)\right] \\
& =\left[\left(\frac{2}{3},-1\right) \rightarrow(1,0)\right] \wedge\left[\left(\frac{4}{5},-\frac{9}{5}\right) \rightarrow\left(\frac{2}{3},-\frac{1}{3}\right)\right] \\
& =\left(\frac{5}{6}, \frac{7}{6}\right)
\end{aligned}
$$

and $e_{X}^{l}(b, a)=\left(\frac{4}{7},-1\right)$, Eq. (12) does not hold. Hence $U$ is not an $l$-join dense in $X$.

## 4. Conclusion

Throughout these concepts introduced in this paper, we have investigated the characteristics of bi-partially ordered sets on complete generalized residuated lattices. In the future, we might to investigate various completions on these spaces.

Conflicts of interest : The author declares no conflict of interest.
Data availability : Not applicable

## References

1. R. Bělohlávek, Fuzzy Relational Systems, Kluwer Academic Publishers, New York, 2002.
2. R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart. 47 (2001), 111-116.
3. P. Flonder, G. Georgescu, A. Iorgulescu, Pseudo-t-norms and pseudo-BL-algebras, Soft Computing 5 (2001), 355-371.
4. G. Georgescu, A. Popescue, Non-commutative Galois connections, Soft Computing 7 (2003), 458-467.
5. J.M. Ko, Y.C. Kim, Bi-closure systems and bi-closure operators on generalized residuated lattices, Journal of Intelligent and Fuzzy Systems 36 (2019), 2631-2643.
6. J.M. Ko, Y.C. Kim, Various operations and right completeness in generalized residuated lattices, Journal of Intelligent and Fuzzy Systems 40 (2021), 149-164.
7. S.P. Tiwari, I. Perfilieva, A.P. Singh, Generalized residuated lattices based F-transform, Iranian Journal of Fuzzy Systems 15 (2018), 165-182.
8. E. Turunen, Mathematics Behind Fuzzy Logic, A Springer-Verlag Co., 1999.
9. C.Y. Wang, B.Q. Hu, Fuzzy rough sets based on general residuated lattices, Information Sciences 248 (2013), 31-49.

Ju-Mok Oh received M.Sc. and Ph.D. at Pohang University of Science and Technology. Since 2012 he has been at Kangnung-Wonju National University. His research interests include applied mathematics and enumerative combinatorics.
Department of Mathematics and Physics, Kangnung-Wonju National University, Kangnung 210-702, Korea.
e-mail: jumokoh@gwnu.ac.kr


[^0]:    Received April 24, 2023. Revised November 6, 2023. Accepted January 22, 2024.
    ${ }^{\dagger}$ This work was supported by the research grant of Gangneung-Wonju National University and the Research Institute of Natural Science of Gangneung-Wonju National University.
    (C) 2024 KSCAM.

