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Abstract. We introduce the concepts of right join-dense, right meet-

dense, left join-dense and left meet-dense induced by bi-partially ordered
sets on complete generalized residuated lattices. We investigate properties

of these concepts and give an example related to them.
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1. Introduction

In this paper, we propose the concepts that characterize bi-partially ordered
sets on complete generalized residuated lattices, namely right join-dense, right
meet-dense, left join-dense, and left meet-dense. We conduct a comprehensive
investigation into the properties of these concepts, and provide a relevant ex-
ample related to them. The purpose of the paper is to contribute to the under-
standing of the structural and behavioral characteristics of bi-partially ordered
sets on complete generalized residuated lattices through the exploration of these
concepts.

2. Preliminaries

In this section, we present some preliminary concepts and properties.

Definition 2.1. [2, 6, 7, 8, 9] A structure (L,∨,∧,⊙,→,⇒,⊥,⊤) is called a
generalized residuated lattice if it satisfies the following three conditions:
(GR1) (L,∨,∧,⊤,⊥) is bounded where ⊤ is the upper bound and ⊥ is the
universal lower bound,
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(GR2) (L,⊙,⊤) is a monoid where ⊤ is the identity,
(GR3) it satisfies a residuation ; i.e., a⊙ b ≤ c if and only if a ≤ b → c
if and only if b ≤ a ⇒ c.

In this paper, we always assume that (L,∧,∨,⊙,→,⇒,⊤,⊥) is a complete
generalized residuated lattice.

Lemma 2.2. [1, 4, 5, 6, 8] Let x, y, z ∈ L. Let {xi}i∈Γ, {yi}i∈Γ ⊆ L. Then the
following hold.
(1) If y ≤ z, then x⊙y ≤ x⊙z, x → y ≤ x → z, z → x ≤ y → x, x ⇒ y ≤ x ⇒ z
and z ⇒ x ≤ y ⇒ x.
(2)

x →
(∧

i∈Γ yi
)

=
∧

i∈Γ (x → yi) ,
(∨

i∈Γ xi

)
→ y =

∧
i∈Γ(xi → y),(∨

i∈Γ xi

)
→

(∨
i∈Γ yi

)
≥

∧
i∈Γ (xi → yi) ,

(∧
i∈Γ xi

)
→

(∧
i∈Γ yi

)
≥

∧
i∈Γ (xi → yi) ,

x ⇒
(∧

i∈Γ yi
)

=
∧

i∈Γ (x ⇒ yi) ,
(∨

i∈Γ xi

)
⇒ y =

∧
i∈Γ(xi ⇒ y),(∨

i∈Γ xi

)
⇒

(∨
i∈Γ yi

)
≥

∧
i∈Γ (xi ⇒ yi) ,

(∧
i∈Γ xi

)
⇒

(∧
i∈Γ yi

)
≥

∧
i∈Γ (xi ⇒ yi) .

(3) (x⊙ y) → z = x → (y → z) and (x⊙ y) ⇒ z = y ⇒ (x ⇒ z).

Definition 2.3. [5, 6] Let X be a set. A map erX : X × X → L is called an
r-partial order (or right-partial order) if it satisfies the following three conditions
:
(O1) erX(x, x) = ⊤ for all x ∈ X,
(O2) If erX(x, y) = erX(y, x) = ⊤ where x, y ∈ X, then x = y,
(R) erX(x, y)⊙ erX(y, z) ≤ erX(x, z) for all x, y, z ∈ X.

A map elX : X ×X → L is called an l-partial order (or left partial order) if it
satisfies the following three conditions :
(O1) elX(x, x) = ⊤ for all x ∈ X,
(O2) If elX(x, y) = elX(y, x) = ⊤ where x, y ∈ X, then x = y,
(L) elX(y, z)⊙ elX(x, y) ≤ elX(x, z) for all x, y, z ∈ X.

The triple
(
X, erX , elX

)
is called a bi-partially ordered set.

Definition 2.4. [6] Let
(
X, erX , elX

)
be a bi-partially ordered set. Let A ∈ LX .

(1) A point x0 is called an r-join (or right-join) of A, denoted by x0 = ⊔rA, if
it satisfies
(RJ1) A(x) ≤ erX (x, x0) for all x ∈ X,
(RJ2)

∧
x∈X [A(x) ⇒ erX(x, y)] ≤ erX (x0, y) for all y ∈ X.

(2) A point x1 is called an r-meet (or right-meet) of A, denoted by x1 = ⊓rA, if
it satisfies
(RM1) A(x) ≤ erX (x1, x) for all x ∈ X,
(RM2)

∧
x∈X [A(x) → erX(y, x)] ≤ erX (y, x1) for all y ∈ X.

(3) A point x0 is called an l-join (or left-join) of A, denoted by x0 = ⊔lA, if it
satisfies
(LJ1) A(x) ≤ elX (x, x0) for all x ∈ X,
(LJ2)

∧
x∈X

[
A(x) → elX(x, y)

]
≤ elX (x0, y) for all y ∈ X.
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(4) A point x1 is called an l-meet (or left-meet) of A, denoted by x1 = ⊓lA, if it
satisfies
(LM1) A(x) ≤ elX (x1, x) for all x ∈ X,
(LM2)

∧
x∈X

[
A(x) ⇒ elX(y, x)

]
≤ elX (y, x1) for all y ∈ X.

(5) X is r-join complete (resp. r-meet complete) if there exists ⊔rA (resp. ⊓rA)
for all A ∈ LX .
(6) X is l-join complete (resp. l-meet complete) if there exists ⊔lA (resp. ⊓lA)
for all A ∈ LX .

Lemma 2.5. [6] Let
(
X, erX , elX

)
be a bi-partially ordered set. Let x0, x1 ∈ X.

Let A ∈ LX . Then the following hold.
(1) x0 = ⊔rA if and only if

∧
x∈X [A(x) ⇒ erX(x, y)] = erX (x0, y) for all y ∈ X.

(2) x1 = ⊓rA if and only if
∧

x∈X [A(x) → erX(y, x)] = erX (y, x1) for all y ∈ X.

(3) x0 = ⊔lA if and only if
∧

x∈X

[
A(x) → elX(x, y)

]
= elX (x0, y) for all y ∈ X.

(4) x1 = ⊓lA if and only if
∧

x∈X

[
A(x) ⇒ elX(y, x)

]
= elX (y, x1) for all y ∈ X.

(5) ⊔rA, ⊓rA, ⊔lA and ⊓lA are unique if each exists.

3. Various denses on generalized residuated lattices

Definition 3.1. [6] Let
(
X, erX , elX

)
and

(
Y, erY , e

l
Y

)
be bi-partially ordered sets.

Let f : X → Y be a map. Define four maps f→
r∗ , f

∗→
r , f→

l∗ , f
∗→
l : LX → LY by

f→
r∗ (A)(y) =

∨
x∈X [erY (y, f(x))⊙A(x)] ,

f∗→
r (A)(y) =

∨
x∈X [A(x)⊙ erY (f(x), y)] ,

f→
l∗ (A)(y) =

∨
x∈X

[
A(x)⊙ elY (y, f(x))

]
,

f∗→
l (A)(y) =

∨
x∈X

[
elY (f(x), y)⊙A(x)

]
where A ∈ LX .

Definition 3.2. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let Y ⊆ X. Let

i : Y → X be the inclusion map.
(1) Y is called an r-join-dense (or right join-dense) in X if for all x ∈ X, there
exists A ∈ LY such that x =

⊔
r i

→
r∗(A).

(2) Y is called an r-meet-dense (or right meet-dense) in X if for all x ∈ X, there
exists A ∈ LY such that x = ⊓ri

∗→
r (A).

(3) Y is called an l-join-dense (or left join-dense) in X if for all x ∈ X, there
exists A ∈ LY such that x =

⊔
l i

→
l∗ (A).

(4) Y is called an l-meet-dense (or left meet-dense) in X if for all x ∈ X, there
exists A ∈ LY such that x = ⊓li

∗→
l (A).

Lemma 3.3. Let
(
X, erX , elX

)
be a bi-partially ordered set. Then the following

hold.
(1)

∧
x∈X [erX(x, y) ⇒ erX(x, z)] = erX(y, z) for all y, z ∈ X.

(2)
∧

x∈X [erX(y, x) → erX(z, x)] = erX(z, y) for all y, z ∈ X.

(3)
∧

x∈X

[
elX(x, y) → elX(x, z)

]
= elX(y, z) for all y, z ∈ X.

(4)
∧

x∈X

[
elX(y, x) ⇒ elX(z, x)

]
= elX(z, y) for all y, z ∈ X.
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Proof. (1) Note that
∧

x∈X [erX(x, y) ⇒ erX(x, z)] ≤ erX(y, y) ⇒ erX(y, z) = erX(y, z).
On the other hand, since erX(x, y) ⊙ erX(y, z) ≤ erX(x, z) for all x ∈ X, we have
by residuation that erX(y, z) ≤ erX(x, y) ⇒ erX(x, z) for all x ∈ X, which implies
that

erX(y, z) ≤
∧
x∈X

[erX(x, y) ⇒ erX(x, z)] .

(2) Note that
∧

x∈X [erX(y, x) → erX(z, x)] ≤ erX(y, y) → erX(z, y) = erX(z, y). On
the other hand, since erX(z, y) ⊙ erX(y, x) ≤ erX(z, x) for all x ∈ X, we have by
residuation that erX(z, y) ≤ erX(y, x) → erX(z, x) for all x ∈ X, which implies
that

erX(z, y) ≤
∧
x∈X

[erX(y, x) → erX(z, x)] .

(3) Note that
∧

x∈X

[
elX(x, y) → elX(x, z)

]
≤ elX(y, y) → elX(y, z) = elX(y, z).

On the other hand, since elX(y, z) ⊙ elX(x, y) ≤ elX(x, z) for all x ∈ X, we have
by residuation that elX(y, z) ≤ elX(x, y) → elX(x, z) for all x ∈ X, which implies
that

elX(y, z) ≤
∧
x∈X

[
elX(x, y) → elX(x, z)

]
.

(4) Note that
∧

x∈X

[
elX(y, x) ⇒ elX(z, x)

]
≤ elX(y, y) ⇒ elX(z, y) = elX(z, y).

On the other hand, since elX(y, x) ⊙ elX(z, y) ≤ elX(z, x) for all x ∈ X, we have
by residuation that elX(z, y) ≤ elX(y, x) ⇒ elX(z, x) for all x ∈ X, which implies
that

elX(z, y) ≤
∧
x∈X

[
elX(y, x) ⇒ elX(z, x)

]
.

□

Theorem 3.4. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let Y ⊆ X. Let

A ∈ LY . Then the following hold.
(1)

∧
x∈X [i→r∗(A)(x) ⇒ erX(x, z)] =

∧
y∈Y [A(y) ⇒ erX(y, z)] for all z ∈ X.

(2)
∧

x∈X [i∗→r (A)(x) → erX(z, x)] =
∧

y∈Y [A(y) → erX(z, y)] for all z ∈ X.

(3)
∧

x∈X

[
i→l∗ (A)(x) → elX(x, z)

]
=

∧
y∈Y

[
A(y) → elX(y, z)

]
for all z ∈ X.

(4)
∧

x∈X

[
i∗→l (A)(x) ⇒ elX(z, x)

]
=

∧
y∈Y

[
A(y) ⇒ elX(z, y)

]
for all z ∈ X.

Proof. (1) Note that∧
x∈X [i→r∗(A)(x) ⇒ erX(x, z)] =

∧
x∈X

[∨
y∈Y [erX(x, y)⊙A(y)] ⇒ erX(x, z)

]
=

∧
x∈X

∧
y∈Y [[erX(x, y)⊙A(y)] → erX(x, z)] (by Lemma 2.2(2))

=
∧

x∈X

∧
y∈Y [A(y) ⇒ [erX(x, y) ⇒ erX(x, z)]] (by Lemma 2.2(3))

=
∧

y∈Y

[
A(y) ⇒

∧
x∈X [erX(x, y) ⇒ erX(x, z)]

]
(by Lemma 2.2(2))

=
∧

y∈Y [A(y) ⇒ erX(y, z)] (by Lemma 3.3(1)).
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(2) Note that∧
x∈X [i∗→r (A)(x) → erX(z, x)] =

∧
x∈X

[∨
y∈Y [A(y)⊙ erX(y, x)] → erX(z, x)

]
=

∧
x∈X

∧
y∈Y [[A(y)⊙ erX(y, x)] → erX(z, x)] (by Lemma 2.2(2))

=
∧

x∈X

∧
y∈Y [A(y) → [erX(y, x) → erX(z, x)]] (by Lemma 2.2(3))

=
∧

y∈Y

[
A(y) →

∧
x∈X [erX(y, x) → erX(z, x)]

]
(by Lemma 2.2(2))

=
∧

y∈Y [A(y) → erX(z, y)] (by Lemma 3.3(2)).

(3) Note that∧
x∈X

[
i→l∗ (A)(x) → elX(x, z)

]
=

∧
x∈X

[∨
y∈Y

[
A(y)⊙ elX(x, y)

]
→ elX(x, z)

]
=

∧
x∈X

∧
y∈Y

[[
A(y)⊙ elX(x, y)

]
→ elX(x, z)

]
(by Lemma 2.2(2))

=
∧

x∈X

∧
y∈Y

[
A(y) →

[
elX(x, y) → elX(x, z)

]]
(by Lemma 2.2(3))

=
∧

y∈Y

[
A(y) →

∧
x∈X

[
elX(x, y) → elX(x, z)

]]
(by Lemma 2.2(2))

=
∧

y∈Y

[
A(y) → elX(y, z)

]
(by Lemma 3.3(3)).

(4) Note that∧
x∈X

[
i→l∗ (A)(x) ⇒ elX(z, x)

]
=

∧
x∈X

[∨
y∈Y

[
elX(y, x)⊙A(y)

]
⇒ elX(z, x)

]
=

∧
x∈X

∧
y∈Y

[[
elX(y, x)⊙A(y)

]
⇒ elX(z, x)

]
(by Lemma 2.2(2))

=
∧

x∈X

∧
y∈Y

[
A(y) ⇒

[
elX(y, x) ⇒ elX(z, x)

]]
(by Lemma 2.2(3))

=
∧

y∈Y

[
A(y) ⇒

∧
x∈X

[
elX(y, x) ⇒ elX(z, x)

]]
(by Lemma 2.2(2))

=
∧

y∈Y

[
A(y) ⇒ elX(z, y)

]
(by Lemma 3.3(4)).

□

Let
(
X, erX , elX

)
be a bi-partially ordered set. Let x ∈ X. Define four maps

(erX)
x
,
(
elX

)
x
,
(
elX

)x
, (erX)x : X → L by

(erX)
x
(y) = erX(y, x),

(
elX

)
x
(y) = elX(x, y),(

elX
)x

(y) = elX(y, x), (erX)x (y) = erX(x, y)

where y ∈ X.
Let (erX)

x |Y ,
(
elX

)
x
|Y ,

(
elX

)x |Y and (erX)x |Y be the restrictions to Y of

(erX)
x
,
(
elX

)
x
,
(
elX

)x
and (erX)x, respectively.

Theorem 3.5. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let Y ⊆ X. Then

the following hold.
(1) Y is an r-join-dense in X if and only if x =

⊔
r i

→
r∗ ((e

r
X)

x |Y ) for all x ∈ X.

(2) Y is an r-meet-dense in X if and only if x = ⊓ri
∗→
r

(
(erX)x |Y

)
for all x ∈ X.

(3) Y is an l-join-dense in X if and only if x =
⊔

l i
→
l∗

((
elX

)x |Y ) for all x ∈ X.

(4) Y is an l-meet-dense in X if and only if x = ⊓li
∗→
l

((
elX

)
x
|Y
)
for all x ∈ X.

Proof. (1) Assume that Y is an r-join-dense in X. Let x ∈ X. Then there exists
A ∈ LY such that x =

⊔
r i

→
r∗(A). By (RJ1), we have

i→r∗(A)(t) ≤ erX(t, x) for all t ∈ X. (1)
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By (RJ2),
∧

w∈X [i→r∗(A)(w) ⇒ erX(w, t)] ≤ erX(x, t) for all t ∈ X. Since∧
w∈X [i→r∗(A)(w) ⇒ erX(w, t)] =

∧
y∈Y [A(y) ⇒ erX(y, t)] by Theorem 3.4(1),

we have ∧
y∈Y

[A(y) ⇒ erX(y, t)] ≤ erX(x, t) for all t ∈ X. (2)

Note that∧
w∈X [i→r∗ ((e

r
X)

x |Y ) (w) ⇒ erX(w, z)]
=

∧
y∈Y [((erX)

x |Y ) (y) ⇒ erX(y, z)] (by Theorem 3.4(1))

=
∧

y∈Y [erX(y, x) ⇒ erX(y, z)]

≤
∧

y∈Y [i→r∗(A)(y) ⇒ erX(y, z)] (by Eq. (1) and Lemma 2.2(1))

=
∧

y∈Y

[∨
t∈Y [erX(y, t)⊙A(t)] ⇒ erX(y, z)

]
=

∧
y∈Y

∧
t∈Y [[erX(y, t)⊙A(t)] ⇒ erX(y, z)] (by Lemma 2.2(2))

=
∧

y∈Y

∧
t∈Y [A(t) ⇒ [erX(y, t) ⇒ erX(y, z)]] (by Lemma 2.2(3))

=
∧

t∈Y

[
A(t) ⇒

∧
y∈Y [erX(y, t) ⇒ erX(y, z)]

]
(by Lemma 2.2(2))

=
∧

t∈Y [A(t) ⇒ erX(t, z)] (by Lemma 3.3(1))
≤ erX(x, z) ( by Eq. (2)).

Moreover,

i→r∗ ((e
r
X)

x |Y ) (w) =
∨

y∈Y [erX(w, y)⊙ (erX)
x |Y (y)]

=
∨

y∈Y [erX(w, y)⊙ erX(y, x)]

≤ erX(w, x).

Therefore x =
⊔

r i
→
r∗ ((e

r
X)

x |Y ).
The converse is trivial.

(2) Assume that Y is an r-meet-dense in X. Let x ∈ X. Then there exists
A ∈ LY such that x = ⊓ri

∗→
r (A). By (RM1), we have

i∗→r (A)(t) ≤ erX(x, t) for all t ∈ X. (3)

By (RM2),
∧

w∈X [i∗→r (A)(w) → erX(t, w)] ≤ erX(t, x) for all t ∈ X. Since∧
w∈X [i∗→r (A)(w) → erX(t, w)] =

∧
y∈Y [A(y) → erX(t, y)] by Theorem 3.4(2),

we have ∧
y∈Y

[A(y) → erX(t, y)] ≤ erX(t, x) for all t ∈ X. (4)
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Note that∧
w∈X

[
i∗→r

(
(erX)x |Y

)
(w) → erX(z, w)

]
=

∧
y∈Y

[(
(erX)x |Y

)
(y) → erX(z, y)

]
(by Theorem 3.4(2))

=
∧

y∈Y [erX(x, y) → erX(z, y)] (by Lemma 3.3(2))

≤
∧

y∈Y [i∗→r (A)(y) → erX(z, y)] (by Eq. (3) and Lemma 2.2(1))

=
∧

y∈Y

[∨
t∈Y [A(t)⊙ erX(t, y)] → erX(z, y)

]
=

∧
y∈Y

∧
t∈Y [[A(t)⊙ erX(t, y)] → erX(z, y)] (by Lemma 2.2(2))

=
∧

y∈Y

∧
t∈Y [A(t) → [erX(t, y) → erX(z, y)]] (by Lemma 2.2(3))

=
∧

t∈Y

[
A(t) →

∧
y∈Y [erX(t, y) → erX(z, y)]

]
(by Lemma 2.2(2))

=
∧

t∈Y [A(t) → erX(z, t)] (by Lemma 3.3(2))
≤ erX(z, x) (by Eq. (4)).

Moreover,

i∗→r
(
(erX)x |Y

)
(w) =

∨
y∈Y

[
(erX)x |Y (y)⊙ erX(y, w)

]
=

∨
y∈Y [erX(x, y)⊙ erX(y, w)]

≤ erX(x,w).

Therefore x = ⊓ri
∗→
r

(
(erX)x |Y

)
.

The converse is trivial.
(3) Assume that Y is an l-join-dense in X. Let x ∈ X. Then there exists A ∈ LY

such that x =
⊔

l i
→
l∗ (A). By (LJ1), we have

i→l∗ (t) = elX(t, x) for all t ∈ X. (5)

By (LJ2),
∧

w∈X

[
i→l∗ (A)(w) → elX(w, t)

]
≤ elX(x, t) for all t ∈ X. Since∧

w∈X

[
i→l∗ (A)(w) → elX(w, t)

]
=

∧
y∈Y

[
A(y) → elX(y, t)

]
by Theorem 3.4(3),

we have ∧
y∈Y

[
A(y) → elX(y, t)

]
≤ elX(x, t) for all t ∈ X. (6)

Note that∧
w∈X

[
i→l∗

((
elX

)x |Y ) (w) → elX(w, z)
]

=
∧

y∈Y

[((
elX

)x |Y ) (y) → elX(y, z)
]
(by Theorem 3.4(3))

=
∧

y∈Y

[
elX(y, x) → elX(y, z)

]
≤

∧
y∈Y

[
i→i∗ (A)(y) → elX(y, z)

]
(by Eq. (5) and Lemma 2.2(1))

=
∧

y∈Y

[∨
t∈Y

[
A(t)⊙ elX(y, t)

]
→ elX(y, z)

]
=

∧
y∈Y

∧
t∈Y

[[
A(t)⊙ elX(y, t)

]
→ elX(y, z)

]
(by Lemma 2.2(2))

=
∧

y∈Y

∧
t∈Y

[
A(t) →

[
elX(y, t) → elX(y, z)

]]
(by Lemma 2.2(3))

=
∧

t∈Y

[
A(t) →

∧
y∈Y

[
elX(y, t) → elX(y, z)

]]
(by Lemma 2.2(2))

=
∧

t∈Y

[
A(t) → elX(t, z)

]
(by Lemma 3.3(3))

≤ elX(x, z) (by Eq. (6)).
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Moreover,

i→l∗
((
elX

)x |Y ) (w) =
∨

y∈Y

[(
elX

)x |Y (y)⊙ elX(w, y)
]

=
∨

y∈Y

[
elX(y, x)⊙ elX(w, y)

]
≤ elX(w, x).

Therefore x =
⊔

l i
→
l∗

((
elX

)x |Y ).
The converse is trivial.

(4) Assume that Y is an l-meet-dense in X. Let x ∈ X. Then there exists
A ∈ LY such that x = ⊓li

∗→
l (A). By (LM1), we have

i∗→l (A)(t) ≤ elX(x, t) for all t ∈ X. (7)

By (LM2),
∧

w∈X

[
i∗→l (A)(w) ⇒ elX(t, w)

]
≤ elX(t, x) for all t ∈ X. Since∧

w∈X

[
i∗→l (A)(w) ⇒ elX(t, w)

]
=

∧
y∈Y

[
A(y) ⇒ elX(t, y)

]
by Theorem 3.4(4),

we have ∧
y∈Y

[
A(y) ⇒ elX(t, y)

]
≤ elX(t, x) for all t ∈ X. (8)

Note that∧
w∈X

[
i∗→l

((
elX

)
x
|Y
)
(w) ⇒ elX(z, w)

]
=

∧
y∈Y

[((
elX

)
x
|Y
)
(y) ⇒ elX(z, y)

]
(by Theorem 3.4(4))

=
∧

y∈Y

[
elX(x, y) ⇒ elX(z, y)

]
≤

∧
y∈Y

[
i∗→l (A)(y) ⇒ elX(z, y)

]
(by Eq. (7) and Lemma 2.2(1))

=
∧

y∈Y

[∨
t∈Y

[
elX(t, y)⊙A(t)

]
⇒ elX(z, y)

]
=

∧
y∈Y

∧
t∈Y

[[
elX(t, y)⊙A(t)

]
⇒ elX(z, y)

]
(by Lemma 2.2(2))

=
∧

y∈Y

∧
t∈Y

[
A(t) ⇒

[
elX(t, y) ⇒ elX(z, y)

]]
(by Lemma 2.2(3))

=
∧

t∈Y

[
A(t) ⇒

∧
y∈Y

[
elX(t, y) ⇒ elX(z, y)

]]
(by Lemma 2.2(2))

=
∧

t∈Y

[
A(t) ⇒ elX(z, t)

]
(by Lemma 3.3(4))

≤ elX(z, x) (by Eq. (8)).

Moreover,

i∗→l
((
elX

)
x
|Y
)
(w) =

∨
y∈Y

[
elX(y, w)⊙ (elX)x|Y (y)

]
=

∨
y∈Y

[
elX(y, w)⊙ erX(x, y)

]
≤ elX(x,w).

Therefore x = ⊓li
∗→
l

((
elX

)
x
|Y
)
. □

By Lemma 2.5 and Theorems 3.4-3.5, we have the following.

Theorem 3.6. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let Y ⊆ X. Then

the following hold.
(1) Y is an r-join-dense in X if and only if

∧
y∈Y [erX(y, x) ⇒ erX(y, z)] =

erX(x, z) for all x, z ∈ X.
(2) Y is an r-meet-dense in X if and only if

∧
y∈Y [erX(x, y) → erX(z, y)] =

erX(z, x) for all x, z ∈ X.
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(3) Y is an l-join-dense in X if and only if
∧

y∈Y

[
elX(y, x) → elX(y, z)

]
=

elX(x, z) for all x, z ∈ X.
(4) Y is an l-meet-dense in X if and only if

∧
y∈Y

[
elX(x, y) ⇒ elX(z, y)

]
=

elX(z, x) for all x, z ∈ X.

Proof. (1) By Theorem 3.5(1), Y is an r-join-dense in X if and only if

x =
⊔
r

i→r∗ ((e
r
X)

x |Y ) for all x ∈ X,

which is equivalent by Lemma 2.5(1) that∧
w∈X

[i→r∗ ((e
r
X)

x |Y ) (w) ⇒ erX(w, z)] = erX(x, z) for all x, z ∈ X,

which is equivalent by Theorem 3.4(1) that∧
y∈Y

[erX(y, x) ⇒ erX(y, z)] = erX(x, z) for all x, z ∈ X.

(2) By Theorem 3.5(2), Y is an r-meet-dense in X if and only if

x = ⊓ri
∗→
r ((erX)x |Y ) for all x ∈ X,

which is equivalent by Lemma 2.5(2) that∧
w∈X

[i∗→r ((erX)x |Y ) (w) → erX(z, w)] = erX(z, x) for all x, z ∈ X,

which is equivalent by Theorem 3.4(2) that∧
y∈Y

[erX(x, y) → erX(z, y)] = erX(z, x) for all x, z ∈ X.

(3) By Theorem 3.5(3), Y is an l-join-dense in X if and only if

x =
⊔
l

i→l∗

((
elX

)x |Y ) for all x ∈ X,

which is equivalent by Lemma 2.5(3) that∧
w∈X

[
i→l∗

((
elX

)x |Y ) (w) → elX(w, z)
]
= elX(x, z) for all x, z ∈ X,

which is equivalent by Theorem 3.4(3) that∧
y∈Y

[
elX(y, x) → elX(y, z)

]
= elX(x, z) for all x, z ∈ X.

(4) By Theorem 3.5(4), Y is an l-meet-dense in X if and only if

x = ⊓li
∗→
l

((
elX

)
x
|Y
)

for all x ∈ X,

which is equivalent by Lemma 2.5(4) that∧
w∈X

[
i∗→l

((
elX

)
x
|Y
)
(w) ⇒ elX(z, w)

]
= elX(z, x) for all x, z ∈ X,
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which is equivalent by Theorem 3.4(4) that∧
y∈Y

[
elX(x, y) ⇒ elX(z, y)

]
= elX(z, x) for all x, z ∈ X.

□

Example 3.7. Let K = {(x, y) ∈ R2 | x > 0} be a set where R is the set of all
real numbers. Define a binary operation ⊗ : K×K → K by (x1, y1)⊗ (x2, y2) =
(x1x2, x1y2 + y1). Then one can see that (K,⊗) is a non-commutative group
where e = (1, 0) is the identity and (x, y)−1 = ( 1x ,−

y
x ) for all (x, y) ∈ K.

Let P = {(a, b) ∈ R2 | (1 < a) or (a = 1 and 0 ≤ b) }. One can see that
P ∩ P−1 = {(1, 0)}, P ⊗ P ⊆ P , (a, b)−1 ⊗ P ⊗ (a, b) = P for all (a, b) ∈ K and
P ∪ P−1 = K. Then P is a positive cone of K.

For all (x1, y1), (x2, y2) ∈ K, define

(x1, y1) ≤ (x2, y2) if (x1, y1)
−1 ⊗ (x2, y2) ∈ P.

Then (K,≤,⊗) is a lattice-group (see [3, 4]). Note that (x1, y1) ≤ (x2, y2) if and
only if either (x1 < x2) or (x1 = x2 and y1 ≤ y2).

Let L =
{
(x, y) ∈ K |

(
1
2 , 1

)
≤ (x, y) ≤ (1, 0)

}
. Define three binary opera-

tions ⊙, ⇒, →: L× L → L by

(x1, y1)⊙ (x2, y2) = [(x1, y1)⊗ (x2, y2)] ∨
(
1
2 , 1

)
= (x1x2, x1y2 + y1) ∨

(
1
2 , 1

)
,

(x1, y1) ⇒ (x2, y2) =
[
(x1, y1)

−1 ⊗ (x2, y2)
]
∧ (1, 0) =

(
x2

x1
, y2−y1

x1

)
∧ (1, 0),

(x1, y1) → (x2, y2) =
[
(x2, y2)⊗ (x1, y1)

−1
]
∧ (1, 0) =

(
x2

x1
,−x2y1

x1
+ y2

)
∧ (1, 0).

One can see that the structure
(
L,⊙,⇒,→,

(
1
2 , 1

)
, (1, 0)

)
is a generalized resid-

uated lattice where ⊥ =
(
1
2 , 1

)
is the least element and ⊤ = (1, 0) is the greatest

element.
Let X = {a, b, c} be a set. Define erX , elX : X ×X → L by

erX =

 (1, 0)
(
5
8 ,−5

) (
5
6 , 1

)(
5
7 , 2

)
(1, 0)

(
5
6 ,−1

)(
6
7 ,

18
5

) (
3
4 ,−

36
5

)
(1, 0)

 , elX =

 (1, 0)
(
2
3 ,−1

) (
5
6 ,−1

)(
4
7 ,−1

)
(1, 0)

(
6
7 ,−1

)(
2
3 ,−

1
3

) (
4
5 ,−

9
5

)
(1, 0)

 .

One can check that erX is an r-partial order and elX is an l-partial order. Hence(
X, erX , elX

)
is a bi-partially ordered set. But erX is not an l-partial order because

erX(c, a)⊙ erX(b, c) ̸≤ erX(b, a).
(1) Let Y = {a, b}. Let i : Y → X be the inclusion map.

By Theorem 3.6(1), Y is an r-join-dense in X if and only if∧
y∈Y

[erX(y, x) ⇒ erX(y, z)] = erX(x, z) for all x, z ∈ X. (9)

By a direct computation, one can see that Eq. (9) holds. Hence Y is an r-join-
dense in X.
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By Theorem 3.6(3), Y is an l-join-dense in X if and only if∧
y∈Y

[
elX(y, x) → elX(y, z)

]
= elX(x, z) for all x, z ∈ X. (10)

Since∧
y∈Y

[
elX(y, c) → elX(y, b)

]
=

[
elX(a, c) → elX(a, b)

]
∧
[
elX(b, c) → elX(b, b)

]
= [( 56 ,−1) → ( 23 ,−1)] ∧ [( 67 ,−1) → (1, 0)]
= ( 45 ,−

1
5 )

and elX(c, b) = ( 45 ,−
9
5 ), Eq. (10) does not hold. Hence Y is not an l-join-dense

in X.
(2) Let U = {a, c}. Let i : U → X be the inclusion map.

By Theorem 3.6(1), U is an r-join-dense in X if and only if∧
y∈U

[erX(y, x) ⇒ erX(y, z)] = erX(x, z) for all x, z ∈ X. (11)

Since∧
y∈U [erX(y, b) ⇒ erX(y, a)] = [erX(a, b) ⇒ erX(a, a)] ∧ [erX(c, b) ⇒ erX(c, a)]

= [( 58 ,−5) ⇒ (1, 0)] ∧ [( 34 ,−
36
5 ) ⇒ ( 67 ,

18
5 )]

= (1, 0)

and erX(b, a) = (57 , 2), Eq. (11) does not hold. Hence U is not an r-join-dense in
X.

By Theorem 3.6(3), U is an l-join-dense in X if and only if∧
y∈U

[
elX(y, x) → elX(y, z)

]
= elX(x, z) for all x, z ∈ X. (12)

Since∧
y∈U

[
elX(y, b) → elX(y, a)

]
=

[
elX(a, b) → elX(a, a)

]
∧
[
elX(c, b) → elX(c, a)

]
= [( 23 ,−1) → (1, 0)] ∧ [( 45 ,−

9
5 ) → ( 23 ,−

1
3 )]

= ( 56 ,
7
6 )

and elX(b, a) = ( 47 ,−1), Eq. (12) does not hold. Hence U is not an l-join dense
in X.

4. Conclusion

Throughout these concepts introduced in this paper, we have investigated the
characteristics of bi-partially ordered sets on complete generalized residuated
lattices. In the future, we might to investigate various completions on these
spaces.
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