Acknowledgement
이 논문은 2024년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원(No. 2021-0-00320, 실 공간 대상 XR 생성 및 변형/증강 기술 개발)과 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(RS-2023-00222776).
References
- S. Maheshwari, R. Narain, and R. Hebbalaguppe, "Transfer4d: A framework for frugal motion capture and deformation transfer," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12836-12846, 2023.
- X. Yi, Y. Zhou, and F. Xu, "Transpose: Real-time 3d human translation and pose estimation with six inertial sensors," ACM Transactions on Graphics, vol. 40, no. 4, 2021.
- X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, "Deepmimic: Example-guided deep reinforcement learning of physics-based character skills," ACM Trans. Graph., vol. 37, no. 4, pp. 143:1-143:14, July 2018.
- X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa, "Amp: Adversarial motion priors for stylized physics-based character control," ACM Trans. Graph., vol. 40, no. 4, July 2021.
- X. B. Peng, Y. Guo, L. Halper, S. Levine, and S. Fidler, "Ase: Large-scale reusable adversarial skill embeddings for physically simulated characters," ACM Trans. Graph., vol. 41, no. 4, July 2022.
- J. Ho and S. Ermon, "Generative adversarial imitation learning," in Advances in Neural Information Processing Systems, vol. 29, 2016.
- C. Tessler, Y. Kasten, Y. Guo, S. Mannor, G. Chechik, and X. B. Peng, "Calm: Conditional adversarial latent models for directable virtual characters," in ACM SIGGRAPH 2023 Conference Proceedings. New York, NY, USA: Association for Computing Machinery, 2023.
- Z. Dou, X. Chen, Q. Fan, T. Komura, and W. Wang, "C.ase: Learning conditional adversarial skill embeddings for physics-based characters," arXiv preprint arXiv:2309.11351, 2023.
- Q. Zhu, H. Zhang, M. Lan, and L. Han, "Neural categorical priors for physics-based character control," ACM Trans. Graph., vol. 42, no. 6, dec 2023. [Online]. Available: https://doi.org/10.1145/3618397
- K. Naderi, J. Rajamaki, and P. Hamalainen, "Discovering and synthesizing humanoid climbing movements," ACM Trans. Graph., vol. 36, no. 4, jul 2017.
- K. Naderi, A. Babadi, and P. Hamalainen, "Learning physically based humanoid climbing movements," Computer Graphics Forum, vol. 37, no. 8, pp. 69-80, 2018. https://doi.org/10.1111/cgf.13513
- K. Naderi, A. Babadi, S. Roohi, and P. Hamalainen, "A reinforcement learning approach to synthesizing climbing movements," in 2019 IEEE Conference on Games (CoG), 2019, pp. 1-7.
- Adobe, "mixamo," https://www.mixamo.com, 2020.
- M. Yan, X. Wang, Y. Dai, S. Shen, C. Wen, L. Xu, Y. Ma, and C. Wang, "Cimi4d: A large multimodal climbing motion dataset under human-scene interactions," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 12977-12988.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, "Proximal policy optimization algorithms," CoRR, vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/1707.06347
- V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, "Isaac gym: High performance gpu-based physics simulation for robot learning," CoRR, vol. abs/2108.10470, 2021. [Online]. Available: https://arxiv.org/abs/2108.10470 108.10470