DOI QR코드

DOI QR Code

Quantitative analysis method for zingiber officinale water extract using high-performance liquid chromatography

  • Mohd S. Md Sarip (Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis (UniMAP)) ;
  • Nik M.A. Nik Daud (Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis (UniMAP)) ;
  • Mohd A. Mohd Zainudin (Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis (UniMAP)) ;
  • Lokman H. Ibrahim (Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis (UniMAP)) ;
  • Syahrul A. Saidi (Faculty of Electrical Engineering & Technology, UniCITI Alam Campus, Universiti Malaysia Perlis (UniMAP)) ;
  • Zuhaili Idham (Department of Deputy Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia) ;
  • Adilah Anuar (Faculty of Chemical Engineering and Technology, Kompleks Pusat Pengajian Jejawi 3, Universiti Malaysia Perlis (UniMAP))
  • 투고 : 2023.07.15
  • 심사 : 2024.01.03
  • 발행 : 2024.06.25

초록

Quantitative analysis of the Zingiber Officinale sample using subcritical water extraction (SWE) was developed employing High-Performance Liquid Chromatography (HPLC) to bolster the advancement of this innovative green extraction process. This research focuses on three principal ginger bioactive compounds: 6-gingerol, 6-shagoal, and 10-gingerol. Various stages were undertaken to establish the quantitative analysis method, encompassing the optimisation of HPLC operating conditions and the formulation of standard calibration curves, yielding individual compound equations. A robust correlation within the calibration curve was achieved, exhibiting an r2 value of 0.9814 and an RSD of 5.00%. A simultaneous, swift, and dependable method was established with an injection time of 20 minutes and an 8-minute delay between injections, in contrast to the previous HPLC analysis requiring a 45-minute injection time for detecting and quantifying all components. Notably, no post-treatment was applied after the SWE process. This advancement allows for potential future online measurement of Zingiber Officinale bioactive compounds extracted using subcritical water extraction through this technology.

키워드

과제정보

The research infrastructure provide by Universiti Teknologi Malaysia is greatly appreciated. Other individuals who have contributed to this research are also duly acknowledged.

참고문헌

  1. Ali, B.H., Blunden, G., Tanira, M.O. and Nemmar, A. (2008), "Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research", Food Chem. Toxicol., 46, 409-420. https://doi.org/ 10.1016/j.fct.2007.09.085.
  2. Bertolini, D., Cassettari, M. and Salvetti, G. (1982), "The dielectric relaxation time of supercooled water", J. Chem. Phys., 76(6), 3285-3290. https://doi.org/10.1063/1.443323.
  3. Cheng, Y., Xue, F., Yu, S., Du, S. and Yang, Y. (2021), "Subcritical water extraction of natural products", Molecul., 30(13), 4004. https://doi.org/10.3390/molecules26134004.
  4. Eikani, M.H., Fereshteh, G., Mehdi, M. and Soosan, R. (2007), "Extraction of volatile oil from cumin (cuminum cyminum L.) with superheated water", J. Food Eng., 30, 255-266. https://doi.org/10.1111/j.1745-4530.2007.00117.x.
  5. Foudah, A.I., Shakeel, F., Yusufoglu, H.S., Ross, S.A. and Alam, P. (2020), "Simultaneous determination of 6-shogaol and 6-gingerol in various ginger (zingiber officinale roscoe) extracts and commercial formulations using a green RP-HPTLC-Densitometry method", Foods, 9, 1136. https://doi.org/10.3390/foods9081136.
  6. Ghoreishi, S.M. and Shahrestani, R.G. (2009), "Subcritical water extraction of mannitol from olive leaves", J. Food Eng., 93, 474-481. https://doi.org/10.1016/j.jfoodeng.2009.02.015.
  7. Hayashi, Y., Matsuda, R. and Poe, R.B. (1995), "Prediction of precision from signal and noise measurement in liquid chromatography: Limit of detection", Chromatogr., 41(1/2), 66-74. https://doi.org/10.1007/BF0227419.
  8. He, X.G., Bernart, M.W., Lian, L.Z. and Lin, L.Z. (1998), "High-performance liquid chromatographyelectrospray mass spectrometric analysis of pungent constituents of ginger", J. Chromatogr. A, 796, 327-334. https://doi.org/10.1016/S0021-9673(97)01013-3.
  9. Ko, M.J., Nam, H.H. and Chung, M.S. (2020), "Subcritical water extraction of bioactive compounds from orostachys japonicus A. berger (crassulaceae)", Sci. Rep., 10, 10890. https://doi.org/10.1038/s41598-020-67508-2.
  10. Kuhn, E.R. (2002), "Water injections in GC: How wet can you get?", LCGC Asia Pacific, 5(3), 30-32.
  11. Magnusson, B. and O rnemark, U. (2014), Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics, 2nd Edition, Eurachem, Gembloux, Belgium.
  12. Markom, M., Hasan, M. and Daud, W.R.W. (2010), "Pressurized water extraction of hydrolysable tannins from phyllanthus niruri linn", Sep. Sci. Technol., 45, 548-553. https://doi.org/10.1080/01496390903485005.
  13. Md Sarip, M.S., Morad, N.A., Mohamad Ali, N.A., Mohd Yusof, Y.A. and Che Yunus, M.A. (2014), "The kinetics of extraction of the medicinal ginger bioactive compounds using hot compressed water", Sep. Purif. Technol., 124, 141-147. https://doi.org/10.1016/j.seppur.2014.01.008.
  14. Miller, J.N. (1991), "Basic statistical methods for analytical chemistry part 2. Calibration and regression methods", Analyst., 116, 3-14. https://doi.org/10.1039/an9911600003.
  15. Mustafa, Z.O., Gogus, F. and Lewis, A.C. (2002), "Subcritical water extraction of essential oils from thymbra spicata", Food Chem., 82, 381-386. https://doi.org/10.1016/S0308-8146(02)00558-7.
  16. Saim, N. and Osman, R. (2008), "Subcritical water extraction of essential oil from coriander (coriandrum sativu L.) seeds", Malay. J. Anal. Sci., 12, 22-24. https://doi.org/10.1016/j.jfoodeng.2006.05.015.
  17. Schwertner, H.A. and Rios, D.C. (2007), "High-performance liquid chromatographic analysis of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol in ginger-containing dietary supplements, spices, teas, and beverages", J. Chromatogr. B, 856, 41-47. https://doi.org/10.1016/j.jchromb.2007.05.011.
  18. Smith, R. M. (1982), "Analysis of the pungent principles of ginger and grains of paradise by high-performance liquid chromatography using electrochemical detection", Chromatogr., 16, 155-157. https://doi.org/10.1007/BF02258887.
  19. WADA Technical Document (2010), Identification Criteria for Qualitative Assays Incorporating Column Chromotography and Mass Spectrometry 2010, World Anti-Doping Agency (WADA), Montreal, Canada.
  20. Wohlmuth, H., Leach, D.N., Smith, M.K. and Myers, S.P. (2005), "Gingerol content of diploid and tetraploid clones of ginger (zingiber officinale roscoe)", J. Agric. Food Chem., 53, 5772-5778. https://doi.org/10.1021/jf050435b.
  21. Zakia, N., Zulfikar, M.A. and Amran, M.A. (2020), "Synthesis and characterization of α-mangostin imprinted polymers and its application for solid phase extraction", Adv. Mater. Res., 9(4), 251-263. https://doi.org/10.12989/amr.2020.9.4.251.