DOI QR코드

DOI QR Code

Comparison study between recovered carbon black and commercial carbon black filled epoxy conductive materials

  • Huai M. Ooi (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Pei L. Teh (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Cheow K. Yeoh (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Wee C. Wong (Ecopower Synergy Sdn. Bhd.) ;
  • Chong H. Yew (Ecopower Synergy Sdn. Bhd.) ;
  • Xue Y. Lim (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Kai K. Yeoh (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Nor A. Abdul Rahim (Faculty of Chemical Engineering & Technology, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis) ;
  • Chun H. Voon (Institute of Nano Electronic Engineering, Universiti Malaysia Perlis)
  • Received : 2023.08.24
  • Accepted : 2024.01.05
  • Published : 2024.06.25

Abstract

Waste tire management and recycling have grown to be significant issues because they bring up a global environmental concern. Thus, turning recycled waste tires into useful products may help tackle the environmental issue. This research aims to study and compare the effect of recycled carbon black (rCB) and commercial carbon black (CB) at certain 15 vol. % of filler loading on the mechanical, thermal, morphology and electrical properties of epoxy/CB composites. For this project, epoxy resin, diethyltoluenediamine (DETDA), recovered carbon black (rCB) and commercial carbon black (CB) graded N330, N550, N660 and N774 were mixed and compared accordingly to the formulation determined. The CB content was dispersed in the epoxy matrix using the mechanical mixing technique. The distribution and dispersion of CB in the epoxy matrix affect the characteristics of the conductive composites. rCB content at 15 vol% was selected at fixed content for comparison purposes due to the optimum value in electrical conductivity results. The flexural strength results followed the sequence of rCB>N774>N660>N550>N330. As for electrical conductivity results, epoxy/N330 exhibited the highest conductivity value, while the others achieved a magnitude of X10-3 due to the highest external surface area of N330. In terms of thermal stability, epoxy/N330 and epoxy/N774 were slightly more stable than epoxy/rCB.

Keywords

Acknowledgement

A special thanks goes to Eco Power Synergy Sdn. Bhd. for supplying the materials.

References

  1. Alameri, I. and Oltulu, M. (2023), "Experimental and numerical study on the mechanical properties of reinforced polyester composites", Adv. Mater. Res., 12(3), 227-242. https://doi.org/10.12989/amr.2023.12.3.227.
  2. Bera, T., Acharya, S.K. and Mishra, P. (2018), "Synthesis, mechanical and thermal properties of carbon black/epoxy composites", Int. J. Eng. Sci. Technol., 10(4), 12-20. https://doi.org/10.4314/ijest.v10i4.2.
  3. Choi, H.J., Kim, M.S., Ahn, D., Yeo, S.Y. and Lee, S. (2019), "Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre", Sci. Rep., 9(1), 6338. https://doi.org/10.1038/s41598-019-42495-1.
  4. Gotro, J. and Prime, R.B. (2017), "Thermosets", Encyclopedia of Polymer Science and Technology, John Wiley & Sons Inc., Hoboken, NJ, USA.
  5. Kam, K.W, Teh, P.L, Yeoh, C.K., Osman, H. and Lim, B.Y. (2019), "Enhancing compatibility in epoxy/vulcanized natural rubber (VNR)/Graphene nano-platelets (GNP) system using epoxidized natural rubber (ENR-50)", Comp. Part B: Eng., 174, 107058. https://doi.org/10.1016/j.compositesb.2019.107058.
  6. Kam, K.W, Teh, P.L, Yeoh, C.K., Osman, H. and Mohamad Rasidi, M.S. (2019), "The potential of natural rubber (NR) in controlling morphology in two-matrix epoxy/NR/graphene nano-platelets (GNP) systems", Polym. Test., 77, 105905. https://doi.org/10.1016/j.polymertesting.2019.105905.
  7. Lauke, B. (2008), "On the effect of particle size on fracture toughness of polymer composites", Compos. Sci. Technol., 68(15-16), 3365-3372. https://doi.org/10.1016/j.compscitech.2008.09.011.
  8. Mouritz, A.P. (2012), "Fracture toughness properties of aerospace materials", Introduction to Aerospace Materials, Elsevier, Amsterdam, Netherlands.
  9. Mousavi, S.R., Estaji, S., Kiaei, H., Mansourian-Tabaei, M., Nouranian, S., Jafari, S.H. and Khonakdar, H.A. (2022), "A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles", Polym. Test., 112, 107645. https://doi.org/10.1016/j.polymertesting.2022.107645.
  10. Norris, C.J., Lopez Cerdan A. and Haar, P.T. (2023), "Understanding recovered carbon black. Rubber", Chem. Technol., 96(2), 196-213. https://doi.org/10.5254/rct.23.76956.
  11. Phua, J.L., Teh, P.L., Ghani, S.A. and Yeoh, C.K. (2016), "Comparison study of carbon black (CB) used as conductive filler in epoxy and polymethylmethacrylate (PMMA)", J. Polym. Eng., 36(4), 391-398. https://doi.org/10.1515/polyeng-2015-0026.
  12. Rajisha, K.R., Deepa, B., Pothan, L.A. and Thomas, S. (2011), "Thermomechanical and spectroscopic characterization of natural fibre composites", Interface Engineering of Natural Fibre Composites for Maximum Performance, Elsevier, Amsterdam, Netherlands.
  13. Shrivastava, A. (2018), "Plastic properties and testing", Introduction to Plastics Engineering, Elsevier, Amsterdam, Netherlands.
  14. Spahr, M.E., Gilardi, R. and Bonacchi, D. (2016), "Carbon black for electrically conductive polymer applications", Polymers and Polymeric Composites: A Reference Series, Springer Berlin, Berlin, Heidelberg, Germany.
  15. Swapp, S. (2017), Scanning Electron Microscopy (SEM), The Science Education Resource Center, Northfield, MN, USA. https://serc.carleton.edu/research_education/geochemsheets/techniques/SEM.html
  16. Verma, A., Baurai, K., Sanjay, M.R. and Siengchin, S. (2020), "Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application", Polym. Compos., 41(1), 338-349. https://doi.org/10.1002/pc.25373.
  17. Wang, M.J., Gray, C.A., Reznek, S.A., Mahmud, K. and Kutsovsky, Y. (2003), "Carbon black", Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons Inc., Hoboken, NJ, USA.
  18. Xu, J., Yu, J., Xu, J., Sun, C., He, W., Huang, J. and Li, G. (2020), "High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis", Sci. Total Environ., 742, 140235. https://doi.org/10.1016/j.scitotenv.2020.140235.