DOI QR코드

DOI QR Code

Sonar detection performance analysis considering bistatic target strength

양상태 표적강도를 고려한 소나 탐지성능 분석

  • 양원준 (한양대학교 해양융합과학과) ;
  • 김동욱 (한양대학교 해양융합과학과) ;
  • 이대혁 (한양대학교 해양융합과학과) ;
  • 최지웅 (한양대학교 ERICA 해양융합공학과) ;
  • 손수욱 (국방과학연구소)
  • Received : 2024.02.20
  • Accepted : 2024.03.05
  • Published : 2024.05.31

Abstract

For effective bi-static sonar operation, detection performance analysis must be performed reflecting the characteristics of sound propagation due to the ocean environment and target information. However, previous studies analyzing bistatic sonar detection performance have either not considered the ocean environment and target characteristics or have been conducted using simplified approaches. Therefore, in this study, we compared and analyzed the bistatic detection performance in Yellow sea and Ulleung basin both with and without considering target characteristics. A numerical analysis model was used to derive an accurate bistatic target strength for the submarine-shaped target, and signal excess was calculated by reflecting the simulated target strength. As a result, significant changes in detection performance were observed depending on the source and receiver locations as well as the target strength.

효과적인 양상태 소나 운용을 위해서는 해양환경 요인에 의한 음파전달 특성과 표적의 정보를 반영한 탐지성능 분석이 수행되어야 한다. 하지만 기존의 양상태 소나 탐지성능 분석은 해양환경 및 표적 특성을 고려하지 않거나 단순화되어 수행되었다. 따라서 본 연구에서는 서해와 울릉분지 해역에서 해양환경과 표적의 특성을 고려한 양상태 탐지성능을 산출하였다. 잠수함 형상을 가지는 표적에 대한 양상태 표적강도 도출을 위해 수치해석 모델을 활용하였으며, 모의된 표적강도를 반영하여 신호초과를 계산하였다. 그 결과 송·수신기 위치, 양상태 표적강도에 따라 유의미한 탐지성능 변화가 확인되었다.

Keywords

Acknowledgement

이 논문은 2024년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(관리번호: UD210004DD).

References

  1. L. Jiang, S. Zhou, and D. Sun, "Accuracy analysis of bistatic active sonar ranging," Proc. IEEE ICSIDP, 1-5 (2019).
  2. M. P. Fewell and S. Ozols, "Simple detection-performance analysis of multistatic sonar for antisubmarine warfare," DSTO Tech. Rep., 2011.
  3. R. Lilley, "Recapture wide-area antisubmarine warfare," Proceedings magazine, 140/6/1336, 44-50 (2014).
  4. E. M. Craparo, M. Karatas, and T. U. Kuhn, "Sensor placement in active multistatic sonar networks," NRL, 64, 287-304 (2017). https://doi.org/10.1002/nav.21746
  5. J.-H. Jang, B.-H. Ku, W.-Y. Hong, I.-I. Kim, and H.-S. Ko, "The effectiveness analysis of multistatic sonar network via detection performance" (in Korean), J. KIMS Technol. 9, 24-32 (2006).
  6. W.-K Kim, H. S. Bae, S.-U. Son, J.-Y. Hahn, and J.-S. Park, "A study of performance characteristics for active sonar in korean shallow seawater temperature structures" (in Korean), J. KIMS Technol. 24, 482-491 (2021). https://doi.org/10.9766/KIMST.2021.24.5.482
  7. S.-U. Son, W. -K. Kim, H. S. Bae, and J. -S. Park, "Assessment of acoustic detection performance for a deployment of bistatic sonar" (in Korean), J. Acoust. Soc. Kr. 41, 419-425 (2022).
  8. A. Sarkissian, "Comparison between the tap model and sara-2d results," Naval Research Lab Washington Branch., Tech. Rep., 1997.
  9. R. P. Hodges, Underwater Acoustics: Analysis, Design and Performance of Sonar (John Wiley & Sons, West Sussex, 2011), pp. 174-176.
  10. S. Kim, S. -K You, J. W. Choi, D. Kang, J. S. Park, D. J. Lee, and K. Park, "Target signal simulation in synthetic underwater environment for performance analysis of monostatic active sonar" (in Korean), J. Acoust. Soc. Kr. 32, 455-471 (2013). https://doi.org/10.7776/ASK.2013.32.6.455
  11. H. S. Bae, Y. H. Ji, W. -J. Kim, W. -S. Kim, J. S. Kim, and S. -U. Yun, "Investigation of target echoes in multi-static sonar system-part I: Design for acoustic measuring system," J. Ocean Eng. Techol. 28, 429-439 (2014). https://doi.org/10.5574/KSOE.2014.28.5.429
  12. Y. H. Ji, H. S. Bae, G. -H. Byun, J. S. Kim, W. -S. Kim, and S. -Y. Park, "Investigation of target echoes in multi-static sonar system-part II: Numerical modeling with experimental verification," J. Ocean Eng. Techol. 28, 440-451 (2014). https://doi.org/10.5574/KSOE.2014.28.5.440
  13. M. Nijhofa, L. Fillinger, L. Gilroy, J. Ehrlich, and I. Schafer, "BeTSSi IIB: Submarine target strength modeling workshop," Proc. UACE2017, 377-384 (2017).
  14. K. Sathish, R. Anbazhagan, R. C. Venkata, F. Arena, and G. Pau, "Investigation and numerical simulation of the acoustic target strength of the underwater submarine vehicle," Inventions, 7, 111 (2022).
  15. T. Okumura, T. Masuya, Y. Takao, and K. Sawada, "Acoustic scattering by an arbitrarily shaped body: an application of the boundary-element method," ICES J. Marine Sci. 60, 563-570 (2003). https://doi.org/10.1016/S1054-3139(03)00060-2
  16. H. Medwin and C. S. Clay, Fundamentals of Acoustical Oceanography (Academic Press, San Diego, 1998), pp. 234-286.
  17. S.-T. Jang, J.-H. Lee, C.-H. Kim, C.-J. Jang, and Y.-S. Jang, "Movement of cold water mass in the northern east china sea in summer" (in Korean), J. Kor. Soc. Oceanogr, 16, 1-13 (2011).
  18. K. Park and P. C. Chu, "Temporal and spatial variability of sound propagation characteris tics in the northern east china sea" (in Korean), J. KIMS Technol. 18, 201-211 (2015).
  19. S. -U. Son, R. Oh, J. W. Choi, and J. S. Park, "Development and validation of a performance analysis model for bistatc sonar" (in Korean), Proc. The KIMS Technol. Conf. 374 (2019).
  20. R. J. Urick, Principles of Underwater Sound (McGraw-Hill, New York, 1983), pp. 17-29.