흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials

강동헌,¹ 양해상,^{2†} 성우제¹

(Dongheon Kang,¹ Haesang Yang,^{2†} and Woojae Seong¹)

¹서울대학교 조선해양공학과, ²세종대학교 AI로봇학과 (Received March 12, 2024; revised May 13, 2024; accepted May 22, 2024)

호 록: 본 논문에서는 흡음형 소음기의 음향성능을 향상시키기 위해 다층 흡음재 배치 순서를 최적화하였다. 소음기 의 음향성능은 투과손실로 판단하였으며, 투과손실을 계산하기 위해 유한요소법 기반 수치해석 프로그램을 사용하였다. 흡음재는 흡음형 소음기에서 많이 사용되는 다공탄성 물질인 폴리우레탄을 사용하였으며, 내부에 공기가 흐르는 상황을 가정하여 Biot-Allard 모델을 적용하였다. 2 kHz 대역까지 관심주파수 영역을 설정하여 흡음재가 단층으로 구성되어 있을 때 음향성능에 영향을 주는 물성치를 확인하였으며, 폴리우레탄 물성치를 바탕으로 단층 및 다층 흡음 재를 가진 소음기의 음향성능을 서로 비교하였다. 이후 Nelder-Mead 방법을 적용하여 소음기 내 다층 흡음재의 배치 순서를 최적화하였으며, 단층 흡음형 소음기에 비해 평균 투과손실이 증가하는 것을 확인하였다.
 핵심용어: 흡음형 소음기, 음향성능, 흡음재, 최적화

ABSTRACT: In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

Keywords: Absorptive silencer, Acoustic performance, Absorbing materials, Optimization

PACS numbers: 43.20.Gp, 43.20.Mv, 43.50.Gf

I.서 론

함정 내부에는 다수의 배관이 존재하며, 배관 내 부에 물과 같은 유체가 흐르면서 소음이 발생하게 된다. 이와 같은 소음은 함정의 생존성과도 직결되 기 때문에 배관 소음을 줄일 수 있는 유체소음기의 설치 및 운용은 필수적이다. 그러나 함정 내부의 협 소한공간을 고려했을 때 소음기의 크기는 제한적일

†Corresponding author: Haesang Yang (haesang.yang@sejong.ac.kr)

Department of Artificial Intelligence and Robotics, Sejong University, 209 Neungdong-ro Ujeong-dang 215, Gwangjin-gu, Seoul 05006, Republic of Korea

(Tel: 82-2-3408-3205, Fax: 82-0508-902-6884)

"본 논문은 2023년도 한국음향학회 추계학술대회에서 발표하였던 논문임."

Copyright©2024 The Acoustical Society of Korea. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

수밖에 없으며, 이때 음향성능이 우수한 흡음형 소 음기가 주로 사용된다.

소음기의 음향성능은 주로 투과손실로 판단하며, 과거 많은 연구에서 실험 및 계산, 수치해석 방법 등 을통해비교, 검증된바있다. Selamet et al.^[1,2]은다공 성 흡음재가 포함된 단층 및 2층 흡음형 소음기에서 경계조건을 이용하여 투과손실을 계산하였으며, 경 계요소법 및 실험 결과와 비교하여 계산 결과가 타 당함을 입증하였다. Seo et al.^[3]은 함정의 해수 배관 소음을 저감하기 위해 탄성 흡음재를 이용한 흡음형 소음기를 연구하였으며, 흡음재 두께, 길이 및 재질 특성에 따른 투과손실 이론값을 구하여 실험 결과와 비교하였다. Lee와 Yang^[4]은 팽창형 소음기의 투과 손실을 실험 및 수치해석 방법을 통해 비교, 검증하 였으며, 다공성 흡음재가 채워진 흡음형 소음기의 투과손실을 수치해석 방법을 통해 검증 및 예측하였 다. Nenning et al.^[5]은 Biot 모델이 적용된 다공탄성 흡 음재로 이루어진 단층 흡음형 소음기의 투과손실을 모드매칭법을 이용하여 계산하였다. 이를 발전시켜 Lee et al.⁶⁰은 다층 다공탄성 흡음형 소음기의 투과손 실을 모드매칭법을 이용하여 계산하였으며, 수치해 석 결과와 비교하여 그 유효성을 입증하였다. Gupta et al.^[7]은 팽창형 소음기의 음향성능을 향상시키기 위해 소음기의 입/출구 위치를 최적 설계하였다.

본 연구에서는 흡음형 소음기 배관 내부에 물이 흐르는 상황을 가정하여 투과손실에 영향을 주는 다 공탄성 흡음재의 물성을 확인하였다. 투과손실을 계 산하기 위해 유한요소법 기반 수치해석 프로그램인 COMSOL Multiphysics를 사용하였으며, 2 kHz 대역 까지 관심주파수 영역으로 설정하였다. 단층 및 다 층 흡음재를 가진 소음기에서 투과손실을 확인한 뒤 소음기의 흡음재 배치 순서를 최적화하여 소음기의 투과손실을 향상시키고자 하였다.

Ⅱ. 흡음형 소음기

2.1 Biot 모델과 Biot-Allard 모델

이번 연구에서 흡음재는 흡음형 소음기에서 많이 사용되는 폴리우레탄을 사용하였으며, 다공탄성 물 질로 가정하였다. 이때 수치해석 프로그램에서는 Biot 이론을 기반으로 한 Biot 모델과 Biot-Allard 모델을 선 택할 수 있다. 먼저, Biot 모델은 물질 내부의 유체가 물 이나 기름과 같은 액체일 때 주로 사용하고 점성 손실 만을 고려한다. 반면, Biot-Allard 모델은 물질 내부에 공기와 같은 기체가 채워져 있을 때 주로 사용하며, 점 성 손실 뿐만 아니라 열에 의한 손실을 고려한다.^[8]

Biot 이론을 적용한 Biot 모델은 아래와 같다. 다공 성 물질의 변위를 **u**, 다공성 물질 내 유체의 변위를 **w**, 유체와 다공성 물질의 총 응력 텐서를 σ라 할 때 Biot의 다공탄성 물질에 대한 파동방정식은 아래와 같이 표현할 수 있다.^[9-11]

$$\rho_{av} \frac{\partial^2}{\partial t^2} \mathbf{u} + \rho_f \frac{\partial^2}{\partial t^2} \mathbf{w} - \nabla \cdot \boldsymbol{\sigma} = 0$$

($\rho_{av} = (1 - \epsilon_p) \rho_d + \epsilon_p \rho_f$), (1)

$$\rho_f \frac{\partial^2}{\partial t^2} \mathbf{u} + \frac{\mu_f}{\chi} \frac{\partial}{\partial t} \mathbf{w} + \frac{\tau}{\epsilon_p} \rho_f \frac{\partial^2}{\partial t^2} \mathbf{w} + \nabla p_f = 0.$$
(2)

이때 ρ_f와 μ_f는 유체의 밀도와 점성계수, τ는 뒤틀림 도, ϵ_b는 공극률, p_f는 다공성 물질 내 유체의 압력, *x* 는 투과성, ρ_d는 다공성 물질의 밀도, ρ_{av}는 평균 밀도 를 각각 나타낸다. 평균 밀도는 다공성 물질과 유체 를 모두 포함한 전체 밀도를 의미한다.

Biot-Allard 모델의 파동방정식은 점성계수와 유체 압축률을 주파수에 종속된 식으로 대체함으로써 표 현할 수 있다. 주파수 종속 점성계수 $\mu(\omega)$ 및 유체 압 축률 $\chi_f(\omega)$ 는 아래 Eqs. (3), (4)와 같이 표현되며, 이 때, L_V 는 점특성 길이, L_{lh} 는 열특성 길이, R_f 는 흐름 저항률, c_p 는 정압비열, c_v 는 정적비열, P_A 는 주변 압 력, Pr는 프란틀 수를 의미한다.^[12]

$$\mu_{f}(\omega) = \mu_{f} \left(1 + \frac{4i\omega\tau^{2}\mu_{f}\rho_{f}}{R_{f}^{2}L_{V}^{2}\epsilon_{p}^{2}}\right)^{\frac{1}{2}},$$
(3)

$$\chi_{f}(\omega) = \frac{1}{\gamma P_{A}} \left[\gamma - (\gamma - 1) \right]$$

$$\times \left(1 + \frac{8\mu_{f}}{i\omega L_{th}^{2} \operatorname{Pr}\rho_{f}} \sqrt{1 + \frac{i\omega L_{th}^{2} \operatorname{Pr}\rho_{f}}{16\mu_{f}}} \right)^{-1} \right]$$

$$(\gamma = c_{b}/c_{v}). \tag{4}$$

본 연구에서는 흡음재인 폴리우레탄 내부에 공기 가 채워진 상황을 가정하므로 Biot-Allard 모델을 적 용하였다.

2.2 흡음형 소음기 구성 및 환경

이번 연구에서 흡음형 소음기는 원통형 소음기를 가정하기 때문에 2D 축 대칭 차원에서 설계하였으 며, 흡음형 소음기의 구조 및 크기는 Fig. 1과 같다.

해석 환경은 상온(20 °C), 상압(1atm)을 가정하여 배관 내 음속은 1481.4 m/s, 밀도는 998.2 kg/m³를 적용 하였으며, 공기의 밀도는 1.204 kg/m³를 적용하였다. 흡음재인 폴리우레탄의 물성치 중 밀도, 전단계수, 손실계수는 독일 KRAIBURG Co.의 물성치^[13]를 적 용하였으며, 나머지 물성치는 일반적인 폴리우레탄 에서 보여지는 범위 내에서 임의로 지정하였다. 세부

Fig. 1. 2D Axisymmetric model of absorptive silencer.

Turno	Polyurethane				
Type	А	В	С	D	Е
Density [kg/m ³]	652	770	828	915	992
Shear Modulus [MPa]	1.15	1.85	2.84	3.51	6
Loss factor	0.1	0.1	0.1	0.09	0.09
Poisson's ratio	0.4				
Porosity	0.5				
Flow resistivity [kPa·s/m ²]	1,000				
Viscous characteristic length [µm]	20				
Thermal characteristic length [µm]	20				
Tortuosity	1.5				

Table	1	Poly	vurethane	nro	nerties
Iable	۰.	FUI	yuretnane	pro	perues.

Table 2. Steel & Rubber properties.

Туре	Steel	Rubber
Density [kg/m ³]	7,850	1,230
Young's Modulus [MPa]	210×10^{3}	10.56
Poisson's ratio	0.3	0.45

물성치는 Table 1과 같으며, 밀도, 전단계수, 손실계 수에 따라 각각 폴리우레탄 A, B, C, D, E로 구분하였 다. 배관 및 소음기를 감싸는 케이싱 부분은 강철, 배 관과 소음기 사이를 물리적으로 분리하는 라이너는 고무로 가정하였으며, 세부 물성치는 Table 2와 같다.

Ⅲ. 음향성능 해석

3.1 물성치 변화에 따른 해석 결과

흡음형 소음기 해석에 앞서 폴리우레탄 각각의 물 성치 중 어떤 물성치가 소음기 투과손실에 주요한 영향을 주는지 파악하기 위해 물성치 변화에 따른 해석을 수행하였다. Table 1에서 보여지는 각각의 물 성치에 따른 투과손실 변화를 살펴보기 위해 폴리우 레탄의 밀도, 전단계수, 손실계수, 공극률, 흐름저항 률의 물성치를 일반적인 범위 내에서 비교하였다. 세부적으로 밀도는 600 kg/m³~1,000 kg/m³, 손실계수 는 0.06~0.14, 전단계수는 2 MPa~10 MPa, 흐름저항 률은 500 kPa·s/m²~10,000 kPa·s/m², 공극률은 0.3~ 0.8 범위에서 투과손실 변화를 관찰하였으며, 이때 밀도, 전단계수, 손실계수물성치 변화에 따른 투과 손실을 관찰할 때 비교대상이 아닌 나머지 물성치는 폴리우레탄 B의 물성치를 공통 적용하였다.

Fig. 2에서 볼 수 있듯이 (a)흐름저항률과 (b)공극 률 변화에 따른 영향은 전혀 없는 것으로 확인하였 다. Fig. 2(c) 밀도의 경우 대체로 비슷한 음향성능을 보였으나, 고주파수 대역에서는 밀도가 높을 때 대 체로 음향성능이 높은 것을 확인하였다. Fig. 2(d) 전 단계수의 경우 그 값이 증가하면서 첫 번째 공진주 파수가 증가하는 반면 흡음재의 탄성이 줄어들면서 음향성능은 전반적으로 감소하는 경향을 보여주었 다. Fig. 2(c) 손실계수는 그 값이 증가함에 따라 공진 에 의한 영향이 줄어들면서 음향성능이 전 주파수 대역에서 전반적으로 증가하는 결과를 확인하였다. 본 논문에서는 폴리우레탄 B의 물성치를 대표적으 로 선택하여 그에 따른 결과를 보여주지만 나머지 폴리우레탄 물성치를 적용하였을 때에도 비슷한 경 향을 확인한 바 있다.

흡음형 소음기 음향성능에 영향을 주는 물성치는 그 영향성에 따라 크게 전단계수, 손실계수, 밀도 순

Fig. 2. Transmission loss according to changes in material properties. (a) Flow resistivity. (b) Porosity. (c) Density. (d) Shear modulus. (e) Loss factor.

으로 정리할 수 있으며, 이 세 가지 물성치는 폴리우 레탄 종류에 따라 구분되는 물성치이다. Fig. 2의 폴 리우레탄 물성치별 음향성능 해석결과를 바탕으로 단층 흡음형 소음기에서 흡음재 각 층에 폴리우레탄 물성치를 적용하여 음향성능을 확인해 보았다.

3.2 단층 흡음형 소음기 해석 결과

단층 흡음형 소음기의 흡음재에 폴리우레탄 물성 치A,B,C,D,E를 적용했을 때의 투과손실은 Fig. 3과 같다. 물성치 A의 경우 밀도는 가장 낮지만, 손실계 수가 높고 전단계수가 낮기 때문에 첫 번째 공진주

Fig. 3. Transmission loss of 1-layer absorptive silencer.

파수는 낮은 값을 보이면서 상대적으로 좋은 음향성 능을 보여주었다. 하지만 물성치 B, C, D로 갈수록 전 단계수의 영향 등으로 음향성능은 점차 감소하였고, 물성치 E를 적용했을 때 밀도는 가장 높지만, 손실계 수가 낮고 전단계수가 가장 높기 때문에 물성치 중 가장 낮은 음향성능을 보여주었다.

3.3 다층 흡음형 소음기 해석 결과

다층 흡음형 소음기는 Fig. 1의 구조에서 N개의 동 일한 두께의 흡음재로 구성하였으며, 이때 흡음재 전체 두께는 50 mm로 고정하였다. 다층 흡음형 소음 기의 형상은 Fig. 4와 같으며, 배관에 가까운 순서대 로 1층, 2층, …, N층을 의미한다.

Fig. 5는 두 층의 흡음재를 포함하는 소음기에서 흡음재 각 층의 물성치 변화에 따른 투과손실을 계 산한 결과이다. Fig. 5(a)는 흡음재 1층에 물성치 C를 고정한 상태에서 흡음재 2층에 다섯 종류의 물성치 를 각각 적용한 결과이며, 700 Hz 이하 주파수 대역 에서 전반적으로 비슷한 음향성능을 보여주었다. 하 지만 그 이상 대역에서는 흡음재 2층에 물성치 A와 E를 적용하였을 때 상대적으로 높은 음향성능을 확 인하였다. Fig. 5(b)는 흡음재 2층에 물성치 C를 고정 한상태에서 1층의 물성치 변화를 준 결과이며, 물성 치 A에서 E로 바뀔수록 첫 번째 공진주파수가 높아 지면서 전반적으로 음향성능은 낮아지는 것을 확인 하였다. 앞서 Fig. 5(a)와 비교했을 때 중고주파 영역 에서는 물성치 변화에 따른 영향이 비슷한 수준으로

Fig. 4. Configuration of N-layer absorptive silencer.

Fig. 5. Transmission loss of 2-layer absorptive silencer. (a) Material C on the 1^{st} layer. (b) Material C on the 2^{nd} layer.

볼 수 있다. 그러나 저주파 대역을 포함하여 관심주 파수 영역 전반에 걸쳐 평가하였을 때 배관에 가까 운 흡음재의 물성치 변화가 소음기의 음향성능에 더 많은 영향을 끼친다는 사실을 확인할 수 있었다.

Figs. 6과 7은 흡음재를 3층 또는 5층으로 구성한 소음기에서 물성치 변화에 따른 투과손실을 계산 한 결과이다. 앞서 2층 흡음형 소음기에서 분석한 결과와 같이 배관에 가까운 층에 적용된 물성치가 음향성능에 지배적인 영향을 끼치는 사실을 확인 하였다.

Fig. 6. Transmission loss of 3-layer absorptive silencer.

Fig. 7. Transmission loss of 5-layer absorptive silencer.

IV. 흡음재 배치 최적화

4.1 최적화 설계

이번 연구에서 흡음재 배치 순서를 최적화하기 위 해 초기 조건에 민감하지 않고 수렴에 빠르게 도달 할 수 있는 Nelder-Mead 방법^[14]을 최적화 기법으로 사용하였다.

최적화 목표를 효과적으로 달성하기 위해서는 목 적함수를 적절하게 설정하는 것이 중요하며, 이번 연구에서는 아래의 두 가지 목적함수를 적용하였다. 먼저, 전반적으로 음향성능을 향상시키기 위해 Eq. (5)와 같이 첫 번째 목적함수를 설정하였다.

$$f_1 = \sum_{f_{\min}}^{f_{\max}} (-TL).$$
 (5)

이때 특정 주파수 대역에서만 투과손실 값이 급격 히 증가하고, 나머지 대역에서는 평균에 미치지 못 할 것을 우려하여 두 번째 목적함수는 음향성능이 균일하게 나올 수 있도록 Eq. (6)과 같이 평균 투과손 실을 기준으로 평균보다 작은 값을 모두 더한 총합 을 목적함수로 설정하였다. 이때 평균 투과손실은 최적화 과정에서 한 번의 계산이 종료되었을 때 결 괏값인 투과손실의 평균을 의미한다.

$$f_{2} = \sum_{f_{\min}}^{f_{\max}} |TL - \overline{TL}|,$$

if $(TL - \overline{TL}) \ge 0$, then 0. (6)

설계변수는 흡음재 종류인 폴리우레탄을 구분하 여 적용하기 위해 밀도, 전단계수, 손실계수를 고려 하였는데, Table 1에 의하면 폴리우레탄의 밀도가 바 뀌면 전단계수와 손실계수가 함께 바뀌기 때문에 밀 도 하나만을 설계변수로 적용하였다. 나머지 물성치 는 음향성능에 큰 영향을 주지 않기 때문에 Table 1과 같이 적용하였다.

4.2 흡음재 배치 최적화 결과

최적화는 흡음재를 3층 또는 5층으로 구성한 소음 기에 대해 각각의 목적함수를 구분하여 적용하였으 며, 전 주파수 대역을 최적화 구간으로 설정하여 진 행하였다.

3층 흡음형 소음기에 첫 번째 목적함수를 적용한 최적화 결과는 Fig. 8과 같다. 앞서 Fig. 6에서 3층 흡 음형 소음기의 평균 투과손실이 가장 큰 경우와 가 장 작은 경우를 함께 비교하였으며, 흡음재 배치 순 서 및 세부 결과는 Table 3과 같다. 이때 흡음재 배치 순서는 좌측부터 1층, 2층, …, N층을 의미한다. 최적 화 결과 약 1,000 Hz~1,700 Hz 주파수 대역에서 투과 손실이 상당히 증가하였으며, 평균 투과손실은 기존 해석 결과 대비 약 3 dB~9 dB 증가하면서, 음향성능 향상이라는 목표를 달성하였다.

이어서 두 번째 목적함수를 적용한 결과는 Fig. 9 및 Table 4와 같다. 기존 해석 결과 대비 전반적으로 균일한 음향성능을 보여주었으며, 평균 투과손실이 약 2 dB~8 dB 증가하면서 최적화 목표를 달성하였

Fig. 8. Transmission loss of 3-layer absorptive silencer (Objective function 1).

Table 3. Optimization result of 3-layer absorptive silencer (Objective function 1).

Case	Objective function 1	Random arrangement		
		(i)	(ii)	
Arrangement	AAD	ACE	ECE	
Avg. TL [dB]	25.91	23.19	16.95	
Increased TL [dB]	2.72~8.96	-	-	

다. 다만, 두 번째 목적함수를 적용한 최적화 결과가 첫 번째 목적함수를 적용한 최적화 결과 대비 상대 적으로 낮은 증가량을 보이는 것은 평균 투과손실보 다 큰 값을 모두 0으로 처리하면서 최적화 구간이 축 소되었기 때문으로 판단된다.

Fig. 10 및 Table 5는 5층 흡음형 소음기에 첫 번째 목적함수를 적용한 최적화 결과이다. 앞서 Fig. 7에 서 5층 흡음형 소음기에서 물성치를 임의 적용한 경 우보다 약 2 dB~8 dB 높은 평균 투과손실을 보여주 었으며, 약 1,100 Hz~1,700 Hz 주파수 대역에서 높은 투과손실을 보이면서 음향성능 향상이라는 최적화 목표를 달성하였다.

마지막으로 5층 흡음형 소음기에서 두 번째 목적 함수를 적용한 결과는 Fig. 11 및 Table 6과 같다. 전주 파수 대역에서 균일한 음향성능을 보여주면서 기존 해석 결과 대비 평균 투과손실이 약 1 dB~7 dB 증가 하면서 최적화 목표를 달성하였다. 마찬가지로 두 번째 목적함수는 평균에 미치지 못하는 구간만을 최 적화 구간으로 삼았기 때문에 최적화 구간이 축소되 면서 첫 번째 목적함수를 적용했을 때 대비 낮은 증

Fig. 9. Transmission loss of 3-layer absorptive silencer (Objective function 2).

Table 4. Optimization result of 3-layer absorptive silencer (Objective function 2).

Case	Objective	Random arrangement		
	function 2	(i)	(ii)	
Arrangement	AAC	ACE	ECE	
Avg. TL [dB]	24.80	23.19	16.95	
Increased TL [dB]	1.61 ~ 7.85	-	-	

Fig. 10. Transmission loss of 5-layer absorptive silencer (Objective function 1).

Table 5. Optimization result of 5-layer absorptive silencer (Objective function 1).

Case	Objective	Random arrangement		
	function 1	(i)	(ii)	
Arrangement	ABBCC	ABCDE	EDCDE	
Avg. TL [dB]	25.32	23.13	17.33	
Increased TL [dB]	2.19 ~ 7.99	-	-	

Fig. 11. Transmission loss of 5-layer absorptive silencer (Objective function 2),

Table 6. Optimization result of 5-layer absorptive silencer (Objective function 2).

Case	Objective	Random arrangement		
	function 2	(i)	(ii)	
Arrangement	ABDCB	ABCDE	EDCDE	
Avg. TL [dB]	23.93	23.13	17.33	
Increased TL [dB]	0.8~6.6	-	-	

가량을 보여주는 것으로 판단된다.

전반적으로 최적화된 흡음재 배치 순서를 살펴보 면두 층이 연속적으로 같은 종류의 폴리우레탄으로 배치된 경우를 볼 수 있다. Table 3에서 최적의 흡음재 배치 순서는 AAD이며, Table 5에서는 ABBCC이다. 이처럼 두 층이 연속적으로 같은 종류의 폴리우레탄 으로 구성될 경우 흡음재 두께를 고려하지 않는다면 AD 혹은 ABC와 같이 2층 혹은 3층의 구조로 볼 수 있 을 것이다. 다만, 실제 폴리우레탄을 제작하는 단계 에서는 규격화된 두께로 폴리우레탄을 제작하기 때 문에 본 논문에서는 일정한 두께로 구성되는 폴리우 레탄을 가정하여 각각 3층 및 5층 구조로 제시하였다.

V.결 론

본 연구에서는 흡음형 소음기의 음향성능 향상을 목표로 수치해석 방법을 이용하여 다층 흡음형 소음 기에서 흡음재 배치 순서를 최적화하였다. 그 과정 에서 흡음형 소음기 안에 들어가는 흡음재의 물성치 에 따른 음향성능 경향을 파악하였으며, 단층 및 다 층 흡음형 소음기에서 음향성능을 확인하였다. 단층 흡음형 소음기에서 다섯 종류의 폴리우레탄 물성치를 적용해 본 결과 전단계수가 낮고 손실계 수가 높은 물성치를 가진 흡음재가 전반적으로 더 높은 음향성능을 보여주었다. 또한 다층 소음기에 서 물성치를 임의 적용하였을 때 배관에 가까운 흡 음재가 음향성능에 더 지배적인 영향을 끼친다는 사실을 확인할 수 있었다. 더 나아가 최적화 과정을 통해 음향성능을 향상시키고자 하였다. 최적화 기 법은 Nelder-Mead 방법을 사용하였으며, 3층 및 5층 흡음형 소음기에서 흡음재 배치 순서를 최적화하였 다. 그 결과 전반적으로 평균 투과손실의 향상을 확 인하였으며, 만약 특정 주파수 대역에서의 음향성능 향상을 목표로 한다면 본 연구에서의 최적화 방법을 적용해 볼 수 있을 것이다.

감사의 글

본 논문은 정부(과학기술정보통신부)의 재원으 로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2022R1A2C1092717).

References

- A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff, "Analytical approach for sound attenuation in perforated dissipative silencers," J. Acoust. Soc. of Am. 115, 2091-2099 (2004).
- A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff, "Dissipative expansion chambers with two concentric layers of fibrous material," Int. J. Veh. Noise Vib. 1, 341-357 (2005).
- Y. S. Seo, K. H. Park, and J. J. Jin, "A study on the absorptive silencer for reducing noise propagate in seawater pipes on ship" (in Korean), KSNVE, 23, 770-776 (2013).
- Y. B. Lee and H. S. Yang, "A study on the acoustic performance of a silencer according to the change of properties of absorbing material" (in Korean), J. Acoust. Soc. Kr. 40, 278-289 (2021).
- B. Nennig, E. Perrey-Debain, and M. Ben Tahar, "A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow," J. Acoust. Soc. Am. 128, 3308-3320 (2010).
- 6. J. M. Lee, H. S. Yang, and W. J. Seong, "Calculating transmission loss of cylindrical silencers lined with

multi-layered poroelastic sound absorbing materials using mode matching method" (in Korean) J. Acoust. Soc. Kr. **41**, 375-388 (2022).

- A. K. Gupta and A. Tiwari, "Enhancement on sound transmission loss for various positioning of inlet and outlet duct of the muffler," Int. J. Engineering and Manufacturing, 5, 1-11 (2015).
- COMSOL Documentation, Acoustics Module User's Guide, https://doc.comsol.com/6.2/docserver/#!/com. comsol.help.comsol/helpdesk/helpdesk.html, (Last viewed May 26, 2024).
- M. A. Biot, "Generalized theory of acoustic propagation in porous dissipative media," J. Acoust. Soc. Am. 34, 1254-1264 (1962).
- M. A. Biot, "Mechanics of deformation and acoustic propagation in porous media," J. Appl. Phys. 33, 1482-1498 (1962).
- J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd Ed (Elsevier, Kidlington, 2007), pp. 339-341.
- J. F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd Ed (John Wiley & Sons, Chichester, 2009), pp. 90.
- KRAIBURG PURASYS Data Sheets Vibrafoam, http:// www.kraiburg-purasys.com/en/downloads/, (Last viewed May 26, 2024).
- D. Lee and M. Wiswall. "A parallel implementation of the simplex function minimization routine," Computational Economics **30**, 171-187 (2007).

저자 약력

▶ 강 동 헌 (Dongheon Kang)

2015년 : 해군사관학교 전기전자공학과 학사 2024년 : 서울대학교 조선해양공학과 석사 2024년 1월 ~ 현재 : 해군 항공사령부 전술 지원대대 제1전술지원대장

▶ 양 해 상 (Haesang Yang)

2010년 : 서울대학교 조선공학과 학사 2016년 : 서울대학교 조선해양공학과 박사 (석박통합과정) 2016년 9월~2019년 10월 : 서울대학교 조 선해양공학과 연수연구원 2019년 11월~2024년 2월 : 서울대학교 조 선해양공학과 BK연구조교수 2024년 3월 ~ 현재 : 세종대학교 AI로봇학 과 조교수 ▶성우제(Woojae Seong)

1990년 : M.I.T. 해양공학과 박사 1991년 : M.I.T. Post-doctoral Associate 1992년 ~ 1996년 : 인하대학교 선박해양 공학과 조교수 1996년 ~ 현재 : 서울대학교 조선해양공 학과 교수