References
- Sarker, I. H. (2021). Deep cybersecurity: a comprehensive overview from neural network and deep learning perspective. SN Computer Science, 2(3), 1-16. https://doi.org/10.1007/s42979-020-00382-x
- Chen, D., Wawrzynski, P., & Lv, Z. (2021). Cyber security in smart cities: a review of deep learning-based applications and case studies. Sustainable Cities and Society, 66, 102655.
- Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W., & Zhao, J. (2021). Research on unsupervised feature learning for Android malware detection based on restricted Boltzmann machines. Future Generation Computer Systems, 120, 91-108. https://doi.org/10.1016/j.future.2021.02.015
- Demertzis, K., Iliadis, L., Pimenidis, E., & Kikiras, P. (2022). Variational restricted Boltzmann machines to automated anomaly detection. Neural Computing and Applications, 1-14.
- Huma, Z. E., Latif, S., Ahmad, J., Idrees, Z., Ibrar, A., Zou, Z., ... & Baothman, F. (2021). A hybrid deep random neural network for cyberattack detection in the industrial internet of things. IEEE Access, 9, 55595-55605. https://doi.org/10.1109/ACCESS.2021.3071766
- Thakkar, A., & Lohiya, R. (2021). A review on machine learning and deep learning perspectives of IDS for IoT: recent updates, security issues, and challenges. Archives of Computational Methods in Engineering, 28(4), 3211-3243. https://doi.org/10.1007/s11831-020-09496-0
- Bello, I., Chiroma, H., Abdullahi, U. A., Gital, A. Y. U., Jauro, F., Khan, A., ... & Abdulhamid, S. I. M. (2021). Detecting ransomware attacks using intelligent algorithms: Recent development and next direction from deep learning and big data perspectives. Journal of Ambient Intelligence and Humanized Computing, 12(9), 8699-8717. https://doi.org/10.1007/s12652-020-02630-7
- Gupta, C., Johri, I., Srinivasan, K., Hu, Y. C., Qaisar, S. M., & Huang, K. Y. (2022). A Systematic Review on Machine Learning and Deep Learning Models for Electronic Information Security in Mobile Networks. Sensors, 22(5), 2017.
- Basit, A., Zafar, M., Liu, X., Javed, A. R., Jalil, Z., & Kifayat, K. (2021). A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommunication Systems, 76(1), 139-154.
- Tsimenidis, S., Lagkas, T., & Rantos, K. (2022). Deep learning in iot intrusion detection. Journal of Network and Systems Management, 30(1), 1-40.
- Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007, August). Bothunter: Detecting malware infection through ids-driven dialog correlation. In USENIX Security Symposium (Vol. 7, pp. 1-16).
- Bilge, L., Balzarotti, D., Robertson, W., Kirda, E., & Kruegel, C. (2012, December). Disclosure: detecting botnet command and control servers through large-scale netflow analysis. In Proceedings of the 28th Annual Computer Security Applications Conference (pp. 129-138).
- Oujezsky, V., Horvath, T., & Skorpil, V. (2016, June). Modeling botnet C&C traffic lifespans from netflow using survival analysis. In 2016 39th International Conference on Telecommunications and Signal Processing (TSP) (pp. 50-55).
- Kheir, N., & Wolley, C. (2013, November). Botsuer: Suing stealthy p2p bots in network traffic through netflow analysis. In International Conference on Cryptology and Network Security (pp. 162-178). Springer, Cham.
- Francois, J., Wang, S., & Engel, T. (2011, May). BotTrack: tracking botnets using NetFlow and PageRank. In International Conference on Research in Networking (pp. 1-14). Springer, Berlin, Heidelberg.
- Amini, P., Azmi, R., & Araghizadeh, M. (2014). Botnet detection using NetFlow and clustering. Advances in Computer Science: an International Journal, 3(2), 139-149.
- Bartos, K., Sofka, M., & Franc, V. (2016). Optimized invariant representation of network traffic for detecting unseen malware variants. In 25th USENIX Security Symposium (USENIX Security 16) (pp. 807-822).
- Perdisci, R., Lee, W., & Feamster, N. (2010, April). Behavioral clustering of http-based malware and signature generation using malicious network traces. In NSDI (Vol. 10, p. 14).
- Rafique, M. Z., & Caballero, J. (2013, October). Firma: Malware clustering and network signature generation with mixed network behaviors. In International Workshop on Recent Advances in Intrusion Detection (pp. 144-163). Springer, Berlin, Heidelberg.
- AlAhmadi, B. A., & Martinovic, I. (2018, May). MalClassifier: Malware family classification using network flow sequence behaviour. In 2018 APWG Symposium on Electronic Crime Research (eCrime) (pp. 1-13).
- Mohaisen, A., West, A. G., Mankin, A., & Alrawi, O. (2014, October). Chatter: Classifying malware families using system event ordering. In 2014 IEEE Conference on Communications and Network Security (pp. 283-291). IEEE.