References
- Wang, M., & Deng, W. (2020). Deep learning for criminal justice reform. Nature Machine Intelligence, 2(1), 11-18. https://www.nature.com/articles/nature14539
- Bias in Bios: Fairness, Accountability, and Transparency in Biometric Systems. (2019). National Academies Press. https://dl.acm.org/doi/abs/10.1145/3287560.3287572
- Garvie, C. (2018). Examining the impact of algorithmic bias Criminology, 108(4), 825-870. https://www.bu.edu/articles/2023/do-algorithms-reducebias-in-criminal-justice/
- O'Neil, C. (2017). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Broadway Books.
- Valla, J. M., Ceci, S. J., & Williams, W. M. (2011). The Accuracy of Inferences About Criminality Based on Facial Appearance. Journal of Social, Evolutionary, and Cultural Psychology, 5(1), 66-91.
- X. Wu, X. Zhang. "Automated inference on criminality using face images," in arXiv preprint arXiv:1611.04135, pp. 4038-4052, 2016.
- R. Ranjan, S. Sankaranarayanan, C. D. Castillo and R. Chellappa, "An All-In-One Convolutional Neural Network for Face Analysis," 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 2017, pp. 17-24, doi: 10.1109/FG.2017.137.
- Johnson, H., Anderson, M., Westra, H. R., & Suter, H. (2018). Inferences on Criminality Based on Appearance. SciSpace - Paper. https://typeset.io/papers/inferences-on-criminality-based-on-appearance-vbtlba1570
- M. Hashemi and M. Hall, 'RETRACTED ARTICLE: Criminal tendency detection from facial images and the gender bias effect', Journal of Big Data, vol. 7, no. 1, p. 2, 2020.
- K. W. Bowyer, M. C. King, W. J. Scheirer, and K. Vangara, 'The "criminality from face" illusion', IEEE Transactions on Technology and Society, vol. 1, no. 4, pp. 175-183, 2020. https://doi.org/10.1109/TTS.2020.3032321
- Sheldon, K. M., Corcoran, M., & Trent, J. (2020). The face of crime: Apparent happiness differentiates criminal and non-criminal photos. The Journal of Positive Psychology, 1-18. doi:10.1080/17439760.2020.1805500
- Keles, U., Lin, C. & Adolphs, R. A Cautionary Note on Predicting Social Judgments from Faces with Deep Neural Networks. Affec Sci 2, 438-454 (2021). https://doi.org/10.1007/s42761-021-00075-5
- Rasmussen, S.H.R., Ludeke, S.G. & Klemmensen, R. Using deep learning to predict ideology from facial photographs: expressions, beauty, and extra-facial information. Sci Rep 13, 5257 (2023).
- G. James, P. Okafor, E. Chukwu, N. Michael, and O. Ebong, "Predictions of Criminal Tendency Through Facial Expression Using Convolutional Neural Network", journalisi, vol. 6, no. 1, pp. 13-29, Mar. 2024. https://doi.org/10.51519/journalisi.v6i1.635
- "Illinois DOC labeled faces dataset", www.kaggle.com. https://www.kaggle.com/datasets/davidjfisher/illinois-doc-labeled-faces-dataset?resource=download
- C. E. Thomaz and G. A. Giraldi. A new ranking method for Principal Components Analysis and its application to face image analysis, Image and Vision Computing, vol. 28, no. 6, pp. 902-913, June 2010. https://doi.org/10.1016/j.imavis.2009.11.005
- Kenhub. Regions of the Head and Neck. Retrieved April 27, 2024, from https://www.kenhub.com/en/library/anatomy/regions-of-the-head-and-neck
- J. Redmon, "YOLO: Real-Time Object Detection," Pjreddie.com, 2012. https://pjreddie.com/darknet/yolo/
- K. Team, "Keras documentation: VGG16 and VGG19," keras.io. https://keras.io/api/applications/vgg/
- Kingma, D. P., & Ba, J. L. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
- Micikevicius, P., Jouppi, N., Kashuk, A., Anguena, J., Tensor Processing Unit Architecture, (2017). Communications of the ACM, 61(7), 10-18. https://doi.org/10.1145/3168260
- "VGG-16 convolutional neural network - MATLAB vgg16," www.mathworks.com.https://www.mathworks.com/help/deeplearning/ref/vgg16.html