참고문헌
- Adam, C., Ladurner, D. and Furtmuller, T. (2022), "Free and forced small flexural vibrations of slightly curved slender composite beams with interlayer slip", Thin Wall. Struct., 180, 109857. https://doi.org/10.1016/j.tws.2022.109857.
- Alessi, Y.A., Ali, I.A., Alazwari, M.A., Almitani, K.H., Abdelrahman, A. and Eltaher, M.A. (2023), "Dynamic analysis of piezoelectric perforated cantilever bimorph energy harvester via finite element analysis", Adv. Aircraft Spacecraft Sci., 10(2), 179-202. https://doi.org/10.12989/aas.2023.10.2.179.
- Almitani, K.H., Mohamed, N., Alazwari, M.A., Mohamed, S.A. and Eltaher, M.A. (2022), "Exact solution of nonlinear behaviors of imperfect bioinspired helicoidal composite beams resting on elastic foundations", Math., 10(6), 887. https://doi.org/10.3390/math10060887.
- Benguediab, S., Kebir, T., Kettaf, F.Z., Daikh, A.A, Tounsi, A., Benguediab, M. and Eltaher, M.A. (2023), "Thermomechanical behavior of Macro and Nano FGM sandwich plates", Adv. Aircraft Spacecraft Sci., 10(1) 83-106. https://doi.org/10.12989/aas.2023.10.1.083.
- Borjalilou, V., Taati, E. and Ahmadian, M.T. (2019), "Bending, buckling and free vibration of nonlocal FGcarbon nanotube-reinforced composite nanobeams: exact solutions", SN Appl. Sci., 1, 1-15. https://doi.org/10.1007/s42452-019-1359-6.
- Calim, F.F. (2012), "Forced vibration of curved beams on two-parameter elastic foundation", Appl. Math. Model., 36(3), 964-973. https://doi.org/10.1016/j.apm.2011.07.066.
- Chang, X., Zhou, J. and Li, Y. (2022), "Post-buckling characteristics of functionally graded fluid-conveying pipe with geometric defects on Pasternak foundation", Ocean Eng., 266, 113056. https://doi.org/10.1016/j.oceaneng.2022.113056.
- Chen, X. and Li, Y. (2018), "Size-dependent post-buckling behaviors of geometrically imperfect microbeams", Mech. Res. Commun., 88, 25-33. https://doi.org/10.1016/j.mechrescom.2017.12.005.
- Ding, H.X., She, G.L. and Zhang, Y.W. (2022), "Nonlinear buckling and resonances of functionally graded fluid-conveying pipes with initial geometric imperfection", Eur. Phys. J. Plus, 137(12), 1-18. https://doi.org/10.1140/epjp/s13360-022-03570-1.
- Ding, H., Lu, Z.Q. and Chen, L.Q. (2019), "Nonlinear isolation of transverse vibration of pre-pressure beams", J. Sound Vib., 442, 738-751. https://doi.org/10.1016/j.jsv.2018.11.028.
- Ecsedi, I. and Dluhi, K. (2005), "A linear model for the static and dynamic analysis of non-homogeneous curved beams", Appl. Math. Model., 29(12), 1211-1231. https://doi.org/10.1016/j.apm.2005.03.006.
- Eltaher, M.A. and Mohamed, N. (2020), "Nonlinear stability and vibration of imperfect CNTs by doublet mechanics", Appl. Math. Comput., 382, 125311. https://doi.org/10.1016/j.amc.2020.125311.
- Eltaher, M.A., Mohamed, N., Mohamed, S.A. and Seddek, L.F. (2019), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.
- Geng, X., Ding, H., Wei, K. and Chen, L. (2020), "Suppression of multiple modal resonances of a cantilever beam by an impact damper", Appl. Math. Mech., 41(3), 383-400. https://doi.org/10.1007/s10483-020-2588-9.
- Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect threelayered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. http://dx.doi.org/10.1016/j.ijmecsci.2017.01.001.
- Hosseini, S.A.H., Rahmani, O., Refaeinejad, V., Golmohammadi, H. and Montazeripour, M. (2023), "Free vibration of deep and shallow curved FG nanobeam based on nonlocal elasticity", Adv. Aircraft Spacecraft Sci., 10(1), 51. https://doi.org/10.12989/aas.2023.10.1.051.
- Jin, Q., Hu, X., Ren, Y. and Jiang, H. (2020), "On static and dynamic snap-throughs of the imperfect postbuckled FG-GRC sandwich beams", J. Sound Vib., 489, 115684. https://doi.org/10.1016/j.jsv.2020.115684.
- Juhasz, Z. and Szekrenyes, A. (2020), "An analytical solution for buckling and vibration of delaminated composite spherical shells", Thin Wall. Struct., 148, 106563. https://doi.org/10.1016/j.tws.2019.106563.
- Lacarbonara, W. (1997), "A theoretical and experimental investigation of nonlinear vibrations of buckled beams", Doctoral Dissertation, Virginia Tech., USA.
- Lee, J.K. and Jeong, S. (2016), "Flexural and torsional free vibrations of horizontally curved beams on Pasternak foundations", Appl. Math. Model., 40(3), 2242-2256. https://doi.org/10.1016/j.apm.2015.09.024.
- Li, Z.M. and Qiao, P. (2014), "On an exact bending curvature model for nonlinear free vibration analysis shear deformable anisotropic laminated beams", Compos. Struct., 108, 243-258. http://dx.doi.org/10.1016/j.compstruct.2013.09.034.
- Ma, T.F. (2003), "Existence results and numerical solutions for a beam equation with nonlinear boundary conditions", Appl. Numer. Math., 47(2), 189-196. https://doi.org/10.1016/S0168-9274(03)00065-5.
- Ma, T.F. and Da Silva, J. (2004), "Iterative solutions for a beam equation with nonlinear boundary conditions of third order", Appl. Math. Comput., 159(1), 11-18. https://doi.org/10.1016/j.amc.2003.08.088.
- Mochida, Y. and Ilanko, S. (2016), "Condensation of independent variables in free vibration analysis of curved beams", Adv. Aircraft Spacecraft Sci., 3(1), 045. https://doi.org/10.12989/aas.2016.3.1.045.
- Mohamed, N., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2018), "Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations", Int. J. Nonlin. Mech., 101, 157-173. https://doi.org/10.1016/j.ijnonlinmec.2018.02.014.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2022a), "Nonlinear static stability of imperfect bioinspired helicoidal composite beams", Math., 10(7), 1084. https://doi.org/10.3390/math10071084.
- Mohamed, S.A., Assie, A.E., Eltaher, M.A., Abo-bakr, R.M. and Mohamed, N. (2024a), "Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations", Mech. Bas. Des. Struct. Mach., 1-28. https://doi.org/10.1080/15397734.2024.2328339.
- Mohamed, S.A., Eltaher, M.A., Mohamed, N. and Abo-bakr, R.M. (2024b), "Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations", Mech. Bas. Des. Struct. Mach., 1-28. https://doi.org/10.1080/15397734.2024.2353321.
- Mohamed, S.A., Mohamed, N. and Eltaher, M.A. (2022b), "Snap-through instability of helicoidal composite imperfect beams surrounded by nonlinear elastic foundation", Ocean Eng., 263, 112171. https://doi.org/10.1016/j.oceaneng.2022.112171.
- Mohamed, N., Mohamed, S.A. and Eltaher, M.A. (2024c), "Nonlinear Forced Vibration of Curved Beam with Nonlinear Viscoelastic Ends", Int. J. Appl. Mech., 16(3), 2450031. https://doi.org/10.1142/S1758825124500315.
- Mohamed, S.A., Mohamed, N., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Multi-objective optimization of snap-through instability of helicoidal composite imperfect beams using Bernstein polynomials method", Appl. Math. Model., 120, 301-329. https://doi.org/10.1016/j.apm.2023.03.034.
- Rezaiee-Pajand, M. and Kamali, F. (2021), "Exact solution for thermal-mechanical post-buckling of functionally graded micro-beams", CEAS Aeronaut. J., 12, 85-100. https://doi.org/10.1007/s13272-020-00480-9.
- Sedighi, H.M. and Shirazi, K.H. (2012), "A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition", J. Comput. Nonlin. Dyn., 7(3), 034502. https://doi.org/10.1115/1.4005924.
- Sedighi, H.M., Chan-Gizian, M. and Noghreha-Badi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Lat. Am. J. Solid. Struct., 11, 810-825. https://doi.org/10.1590/S1679-78252014000500005
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39(2), 522392. https://doi.org/10.1007/s10409-022-22392-x.
- Siam, O.A., Shanab, R.A., Eltaher, M.A. and Mohamed, N.A. (2023), "Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method", Adv. Aircraft Spacecraft Sci., 10(3), 257-279. https://doi.org/10.12989/aas.2023.10.3.257.
- Tekin, G., Ecer, S. and Kadioglu, F. (2023), "An alternative procedure for longitudinal vibration analysis of bars with arbitrary boundary conditions", J. Appl. Comput. Mech., 9(1), 294-301. https://doi.org/10.1016/j.ijmecsci.2021.106903.
- Wang, P., Cao, R., Deng, Y., Sun, Z., Luo, H. and Wu, N. (2023), "Vibration and resonance reliability analysis of non-uniform beam with randomly varying boundary conditions based on Kriging model", Struct., 50, 925-936. https://doi.org/10.1016/j.istruc.2023.02.050.
- Yang, Y.B., Liu, Y.H. and Xu, H. (2023), "Recovering mode shapes of curved bridges by a scanning vehicle", Int. J. Mech. Sci., 253, 108404. https://doi.org/10.1016/j.ijmecsci.2023.108404.
- Ye, S.Q., Mao, X.Y., Ding, H., Ji, J.C. and Chen, L.Q. (2020), "Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions", Int. J. Mech. Sci., 168, 105294. https://doi.org/10.1016/j.ijmecsci.2019.105294.
- Yuan, J.R. and Ding, H. (2022), "Dynamic model of curved pipe conveying fluid based on the absolute nodal coordinate formulation", Int. J. Mech. Sci., 232, 107625. https://doi.org/10.1016/j.ijmecsci.2022.107625.
- Yuan, J.R. and Ding, H. (2023), "An out-of-plane vibration model for in-plane curved pipes conveying fluid", Ocean Eng., 271, 113747. https://doi.org/10.1016/j.oceaneng.2023.113747.
- Zhai, Y.J., Ma, Z.S., Wang, B. and Ding, Q. (2023), "Dynamic characteristic analysis of beam structures with nonlinear elastic foundations and boundaries", Int. J. Nonlin. Mech., 153, 104409. https://doi.org/10.1016/j.ijnonlinmec.2023.104409.
- Zhao, Y., Du, J., Chen, Y. and Liu, Y. (2022), "Dynamic behavior analysis of the axially loaded beam with the nonlinear support and elastic boundary constraints", Chin. J. Theor. Appl. Mech., 54(9), 2529-2542. https://doi/10.6052/0459-1879-22-088.