DOI QR코드

DOI QR Code

Prediction of stiffness degradation in composite laminate with transverse cracking and delamination under hygrothermal conditions-desorption case

  • B. Boukert (Aeronautical Sciences Laboratory, Institute of Aeronautics and Space Studies, University of Blida 1) ;
  • M. Khodjet-Kesba (Aeronautical Sciences Laboratory, Institute of Aeronautics and Space Studies, University of Blida 1) ;
  • A. Benkhedda (Aeronautical Sciences Laboratory, Institute of Aeronautics and Space Studies, University of Blida 1) ;
  • E.A. Adda Bedia (Laboratory of Materials and Hydrology, University of Sidi Bel Abbes)
  • Received : 2023.12.16
  • Accepted : 2024.04.02
  • Published : 2024.03.25

Abstract

The stiffness reduction of cross-ply composite laminates featuring a transverse cracking and delamination within the mid-layer is predicted through utilization of a modified shear-lag model, incorporating a stress perturbation function. Good agreement is obtained by comparing the prediction models and experimental data. The material characteristics of the composite are affected by fluctuations in temperature and transient moisture concentration distribution in desorption case, based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution induces a stiffness reduction. The obtained results demonstrate the stiffness degradation dependence on factors such as cracks density, thickness ratio and environmental conditions. The present study underscores the significance of comprehending the degradation of material properties in the failure progression of laminates, particularly in instances of extensive delamination growth.

Keywords

References

  1. Adda-Bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged [θm/90n] S composite laminates with transverse cracking", J. Mater. Proc. Technol., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002.
  2. Barbero, E.J. and Cosso, F.A. (2014), "Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates", Compos. Part B: Eng., 56, 638-646. https://doi.org/10.1016/j.compositesb.2013.08.084.
  3. Behera, A., Bhoi, N.K., Thawre, M.M., Ballal, A. and Das, D. (2023), "Quantification of hygrothermal aging-induced interfacial debonding of carbon fiber/epoxy composites at nano-to-micrometer length scales", J. Compos. Mater., 57(30), 4637-4647. https://doi.org/10.1177/00219983231213912.
  4. Behera, A., Vishwakarma, A., Thawre, M.M. and Ballal, A. (2020), "Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate", Compos. Commun., 17, 51-55. https://doi.org/10.1016/j.coco.2019.11.009.
  5. Benkhedda, A. and Tounsi, A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
  6. Berthelot, J.M., Leblond, P., El Mahi, A. and Le Corre, J.F. (1996), "Transverse cracking of cross-ply laminates: Part 1. Analysis", Compos. Part A: Appl. Sci. Manuf., 27(10), 989-1001. https://doi.org/10.1016/1359-835X(96)80002-A.
  7. Bouazza, M., Tounsi, A., Benzair, A. and Adda-Bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(4), 1116-1123. https://doi.org/10.1016/j.matdes.2006.02.003.
  8. Carraro, P.A., Maragoni, L. and Quaresimin, M. (2019), "Characterisation and analysis of transverse crack-induced delamination in cross-ply composite laminates under fatigue loadings", Int. J. Fatig., 129, 105217. https://doi.org/10.1016/j.ijfatigue.2019.105217.
  9. Chamis, C.C. (1983), "Simplified composite micromechanics equations for hygral, thermal and mechanical properties", Ann. Conf. of the Society of the Plastics Industry (SPI) Reinforced Plastics/Composites Inst., No. NASA-TM-83320, January.
  10. Cheng, W. and Cao, Y. (2023), "Investigation of the hygrothermal aging behavior of GFRP laminates used for a marine unmanned aerial vehicle structure", AIP Adv., 13(4), 045107. https://doi.org/10.1063/5.0140558.
  11. Deepa, A., Padmanabhan, K. and Raghunadh, G. (2016), "Effect of hygrothermal loading on laminate composites", Ind. J. Sci. Technol., 9(34), 1. https://10.17485/ijst/2016/v9i34/100979
  12. Fernandes, O., Dutta, J. and Pai, Y. (2023), "Effect of various factors and hygrothermal ageing environment on the low velocity impact response of fibre reinforced polymer composites-A comprehensive review". Cogent Eng., 10(1), 2247228. https://doi.org/10.1080/23311916.2023.2247228.
  13. Fulco, A.P.P., de Medeiros, A.M., Tonatto, M.L.P., Amico, S.C., Talreja, R. and Melo, J.D.D. (2019), "Fatigue damage and fatigue life diagrams of a carbon/epoxy cross ply laminate aged by hygrothermal exposure", Compos. Part A: Appl. Sci. Manuf., 127, 105628. https://doi.org/10.1016/j.compositesa.2019.105628.
  14. Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", Air Force Materials Lab., AFML-TR.
  15. Kesba, M.K., Benkhedda, A. and Boukert, B. (2019), "Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination", Adv. Aircraft Spacecraft Sci., 6(4), 315-331. https://doi.org/10.12989/aas.2019.6.4.315.
  16. Khodjet-Kesba, M., AddaBedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n] s composite laminates", Streel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057.
  17. Khodjet-Kesba, M., Benkhedda, A., Bedia, E.A. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
  18. Li, D.H. (2016), "Delamination and transverse crack growth prediction for laminated composite plates and shells", Comput. Struct., 177, 39-55. https://doi.org/10.1016/j.compstruc.2016.07.011.
  19. Maurice, F.A. (2001), "Engineering composite materials", EMC471, The Pennsylvania State University.
  20. Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda, E.A.B. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mecanique Indus., 12(5), 395-398. https://doi.org/10.1051/meca/2011134.
  21. Shen, C.H. and Springer, G.S. (1976), "Moisture absorption and desorption of composite materials", J. Compos. Mater., 10(1), 2-20. https://doi.org/10.1177/002199837601000101
  22. Singh, S. and Angra, S. (2019), "Hygrothermal degradation of mechanical properties of nanoclay based stainless steel and glass fibre-epoxy laminate", J. Phys.: Conf. Ser., 1240(1), 012164. https://doi.org/10.1088/1742-6596/1240/1/012164.
  23. Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London.
  24. Takeda, N. and Ogihara, S. (1994), "Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates", Compos. Sci. Technol., 52(3), 309-318. https://doi.org/10.1016/0266-3538(94)90166-X.
  25. Tsai, S.W. (1988), Composites Design, Think Composites, Dayton, Paris, Tokyo.
  26. van der Meer, F.P. and Sluys, L.J. (2013), "A numerical investigation into the size effect in the transverse crack tension test for mode II delamination", Compos. Part A: Appl. Sci. Manuf., 54, 145-152. https://doi.org/10.1016/j.compositesa.2013.07.013.
  27. Varun, J.P., Mondal, P. and Mahato, P.K. (2022), "Enhancement of aeroelastic performance of a smart delaminated composite plate under hygrothermal environment", Compos. Struct., 292, 115662. https://doi.org/10.1016/j.compstruct.2022.115662.
  28. Vergnaud, J.M. (1992), Drying of Polymeric and Solid Materials: Modelling and Industrial Applications, Springer-Verlag, London.
  29. Wang, S., Akbolat, M.C ., Katnam, K.B., Zou, Z., Potluri, P., Sprenger, S. and Taylor, J. (2023), "The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil toughening", Compos. Part A: Appl. Sci. Manuf., 171, 107576. https://doi.org/10.1016/j.compositesa.2023.107576.
  30. Ye, J., Wu, Y.S., Gao, Y., Gong, C.X., Wang, H., Xu, X.P. and Peng, H.X. (2023), "Hygrothermal aging effects on fiber-metal-laminates with engineered interfaces", Compos. Commun., 43, 101721. https://doi.org/10.1016/j.coco.2023.101721.
  31. Zhang, H. and Minnetyan, L. (2006), "Variational analysis of transverse cracking and local delamination in [θm/90n] s laminates", Int. J. Solid. Struct., 43(22-23), 7061-7081. https://doi.org/10.1016/j.ijsolstr.2006.03.004.
  32. Zhang, H., Song, Z., Zhang, L., Liu, Z. and Zhu, P. (2023), "Effects of hygrothermal ageing and temperature on the mechanical behavior of aluminum-CFRP hybrid (riveted/bonded) joints", Int. J. Adhes. Adhesiv., 121, 103299. https://doi.org/10.1016/j.ijadhadh.2022.103299.
  33. Zhao, L.C., Karimi, S. and Xu, L. (2023), "An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions", J. Adhes., 1-22. https://doi.org/10.1080/00218464.2023.2270431.
  34. Zhu, Y.T. and Xiong, J.J. (2023), "Hygrothermal effect on mechanical behaviours and failure mechanisms of single-lap countersunk-screwed CFRPI-metal joint", Mech. Adv. Mater. Struct., 30(17), 3572-3587. https://doi.org/10.1080/15376494.2022.2079029.
  35. Zubillaga, L., Turon, A., Renart, J., Costa, J. and Linde, P. (2015), "An experimental study on matrix crack induced delamination in composite laminates", Compos. Struct., 127, 10-17. https://doi.org/10.1016/j.compstruct.2015.02.077.