References
- Adda-Bedia, E.A., Bouazza, M., Tounsi, A., Benzair, A. and Maachou, M. (2008), "Prediction of stiffness degradation in hygrothermal aged [θm/90n] S composite laminates with transverse cracking", J. Mater. Proc. Technol., 199(1-3), 199-205. https://doi.org/10.1016/j.jmatprotec.2007.08.002.
- Barbero, E.J. and Cosso, F.A. (2014), "Determination of material parameters for discrete damage mechanics analysis of carbon-epoxy laminates", Compos. Part B: Eng., 56, 638-646. https://doi.org/10.1016/j.compositesb.2013.08.084.
- Behera, A., Bhoi, N.K., Thawre, M.M., Ballal, A. and Das, D. (2023), "Quantification of hygrothermal aging-induced interfacial debonding of carbon fiber/epoxy composites at nano-to-micrometer length scales", J. Compos. Mater., 57(30), 4637-4647. https://doi.org/10.1177/00219983231213912.
- Behera, A., Vishwakarma, A., Thawre, M.M. and Ballal, A. (2020), "Effect of hygrothermal aging on static behavior of quasi-isotropic CFRP composite laminate", Compos. Commun., 17, 51-55. https://doi.org/10.1016/j.coco.2019.11.009.
- Benkhedda, A. and Tounsi, A. (2008), "Effect of temperature and humidity on transient hygrothermal stresses during moisture desorption in laminated composite plates", Compos. Struct., 82(4), 629-635. https://doi.org/10.1016/j.compstruct.2007.04.013.
- Berthelot, J.M., Leblond, P., El Mahi, A. and Le Corre, J.F. (1996), "Transverse cracking of cross-ply laminates: Part 1. Analysis", Compos. Part A: Appl. Sci. Manuf., 27(10), 989-1001. https://doi.org/10.1016/1359-835X(96)80002-A.
- Bouazza, M., Tounsi, A., Benzair, A. and Adda-Bedia, E.A. (2007), "Effect of transverse cracking on stiffness reduction of hygrothermal aged cross-ply laminates", Mater. Des., 28(4), 1116-1123. https://doi.org/10.1016/j.matdes.2006.02.003.
- Carraro, P.A., Maragoni, L. and Quaresimin, M. (2019), "Characterisation and analysis of transverse crack-induced delamination in cross-ply composite laminates under fatigue loadings", Int. J. Fatig., 129, 105217. https://doi.org/10.1016/j.ijfatigue.2019.105217.
- Chamis, C.C. (1983), "Simplified composite micromechanics equations for hygral, thermal and mechanical properties", Ann. Conf. of the Society of the Plastics Industry (SPI) Reinforced Plastics/Composites Inst., No. NASA-TM-83320, January.
- Cheng, W. and Cao, Y. (2023), "Investigation of the hygrothermal aging behavior of GFRP laminates used for a marine unmanned aerial vehicle structure", AIP Adv., 13(4), 045107. https://doi.org/10.1063/5.0140558.
- Deepa, A., Padmanabhan, K. and Raghunadh, G. (2016), "Effect of hygrothermal loading on laminate composites", Ind. J. Sci. Technol., 9(34), 1. https://10.17485/ijst/2016/v9i34/100979
- Fernandes, O., Dutta, J. and Pai, Y. (2023), "Effect of various factors and hygrothermal ageing environment on the low velocity impact response of fibre reinforced polymer composites-A comprehensive review". Cogent Eng., 10(1), 2247228. https://doi.org/10.1080/23311916.2023.2247228.
- Fulco, A.P.P., de Medeiros, A.M., Tonatto, M.L.P., Amico, S.C., Talreja, R. and Melo, J.D.D. (2019), "Fatigue damage and fatigue life diagrams of a carbon/epoxy cross ply laminate aged by hygrothermal exposure", Compos. Part A: Appl. Sci. Manuf., 127, 105628. https://doi.org/10.1016/j.compositesa.2019.105628.
- Halpin, J.C. and Tsai, S.W. (1968), "Effects of environmental factors on composite materials", Air Force Materials Lab., AFML-TR.
- Kesba, M.K., Benkhedda, A. and Boukert, B. (2019), "Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination", Adv. Aircraft Spacecraft Sci., 6(4), 315-331. https://doi.org/10.12989/aas.2019.6.4.315.
- Khodjet-Kesba, M., AddaBedia, E.A., Benkhedda, A. and Boukert, B. (2016), "Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n] s composite laminates", Streel Compos. Struct., 21(1), 57-72. https://doi.org/10.12989/scs.2016.21.1.057.
- Khodjet-Kesba, M., Benkhedda, A., Bedia, E.A. and Boukert, B. (2018), "On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions", Struct. Eng. Mech., 67(2), 165-173. https://doi.org/10.12989/sem.2018.67.2.165.
- Li, D.H. (2016), "Delamination and transverse crack growth prediction for laminated composite plates and shells", Comput. Struct., 177, 39-55. https://doi.org/10.1016/j.compstruc.2016.07.011.
- Maurice, F.A. (2001), "Engineering composite materials", EMC471, The Pennsylvania State University.
- Rezoug, T., Benkhedda, A., Khodjet-Kesba, M. and Adda, E.A.B. (2011), "Analysis of the composite patches cracked and aged in hygrothermal conditions", Mecanique Indus., 12(5), 395-398. https://doi.org/10.1051/meca/2011134.
- Shen, C.H. and Springer, G.S. (1976), "Moisture absorption and desorption of composite materials", J. Compos. Mater., 10(1), 2-20. https://doi.org/10.1177/002199837601000101
- Singh, S. and Angra, S. (2019), "Hygrothermal degradation of mechanical properties of nanoclay based stainless steel and glass fibre-epoxy laminate", J. Phys.: Conf. Ser., 1240(1), 012164. https://doi.org/10.1088/1742-6596/1240/1/012164.
- Staab, G. (1999), Laminar Composite, Butterworth-Heinemann, London.
- Takeda, N. and Ogihara, S. (1994), "Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates", Compos. Sci. Technol., 52(3), 309-318. https://doi.org/10.1016/0266-3538(94)90166-X.
- Tsai, S.W. (1988), Composites Design, Think Composites, Dayton, Paris, Tokyo.
- van der Meer, F.P. and Sluys, L.J. (2013), "A numerical investigation into the size effect in the transverse crack tension test for mode II delamination", Compos. Part A: Appl. Sci. Manuf., 54, 145-152. https://doi.org/10.1016/j.compositesa.2013.07.013.
- Varun, J.P., Mondal, P. and Mahato, P.K. (2022), "Enhancement of aeroelastic performance of a smart delaminated composite plate under hygrothermal environment", Compos. Struct., 292, 115662. https://doi.org/10.1016/j.compstruct.2022.115662.
- Vergnaud, J.M. (1992), Drying of Polymeric and Solid Materials: Modelling and Industrial Applications, Springer-Verlag, London.
- Wang, S., Akbolat, M.C ., Katnam, K.B., Zou, Z., Potluri, P., Sprenger, S. and Taylor, J. (2023), "The effect of hygrothermal ageing on the delamination of Carbon/epoxy laminates with Core-shell rubber nanoparticle and Micro-fibre thermoplastic veil toughening", Compos. Part A: Appl. Sci. Manuf., 171, 107576. https://doi.org/10.1016/j.compositesa.2023.107576.
- Ye, J., Wu, Y.S., Gao, Y., Gong, C.X., Wang, H., Xu, X.P. and Peng, H.X. (2023), "Hygrothermal aging effects on fiber-metal-laminates with engineered interfaces", Compos. Commun., 43, 101721. https://doi.org/10.1016/j.coco.2023.101721.
- Zhang, H. and Minnetyan, L. (2006), "Variational analysis of transverse cracking and local delamination in [θm/90n] s laminates", Int. J. Solid. Struct., 43(22-23), 7061-7081. https://doi.org/10.1016/j.ijsolstr.2006.03.004.
- Zhang, H., Song, Z., Zhang, L., Liu, Z. and Zhu, P. (2023), "Effects of hygrothermal ageing and temperature on the mechanical behavior of aluminum-CFRP hybrid (riveted/bonded) joints", Int. J. Adhes. Adhesiv., 121, 103299. https://doi.org/10.1016/j.ijadhadh.2022.103299.
- Zhao, L.C., Karimi, S. and Xu, L. (2023), "An experimental investigation of static and fatigue behavior of various adhesive single lap joints under bending loads subjected to hygrothermal and thermal conditions", J. Adhes., 1-22. https://doi.org/10.1080/00218464.2023.2270431.
- Zhu, Y.T. and Xiong, J.J. (2023), "Hygrothermal effect on mechanical behaviours and failure mechanisms of single-lap countersunk-screwed CFRPI-metal joint", Mech. Adv. Mater. Struct., 30(17), 3572-3587. https://doi.org/10.1080/15376494.2022.2079029.
- Zubillaga, L., Turon, A., Renart, J., Costa, J. and Linde, P. (2015), "An experimental study on matrix crack induced delamination in composite laminates", Compos. Struct., 127, 10-17. https://doi.org/10.1016/j.compstruct.2015.02.077.