References
- Abunassar, N., Alas, M. and Ali, S.I.A. (2023), "Prediction of compressive strength in self-compacting concrete containing fly ash and silica fume using ANN and SVM", Arab. J. Sci. Eng., 48, 5171-5184. https://doi.org/10.1007/s13369-022-07359-3.
- Alkayem, N.F., Shen, L., Mayya, A., Asteris, P.G., Fu, R., Di Luzio, G., Strauss, A. and Cao, M. (2023), "Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives", J. Build. Eng., 2023, 108369. https://doi.org/10.1016/j.jobe.-2023.108369.
- Allouzi, R., Abu-Shamah, A. and Alkloub A. (2022), "Capacity prediction of straight and inclined slender concrete-filled double-skin tubular columns", Multidiscip. Model. Mater. Struct., 18(4), 688-707. https://doi.org/10.1108/MMMS-05-2022-0079.
- Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integr., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
- Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.-2020.106167.
- Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural. Comput. Appl., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
- Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural. Comput. Appl., 32(15), 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
- Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
- Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A. and Lourenco, P.B. (2021a), "Prediction of cement-based mortars compressive strength using machine learning techniques", Neural. Comput. Appl., 33(19), 13089-13121. https://doi.org/10.1007/s00521-021-06004-8.
- Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021d), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelling", Eng. Struct., 248, 113297. https://doi.org/10.1016/j.engstruct.2021.113297.
- Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Le, H.V. and Pham, B.T. (2021c), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
- Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021b), "Soft computing-based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276. https://doi.org/10.1016/j.engstruct.2021.113276.
- Bu, L., Du, G. and Hou, Q. (2021), "Prediction of the compressive strength of recycled aggregate", Mater., 14(14), 3921. https://doi.org/10.3390/ma14143921.
- Bui, Q.A.T., Nguyen, D.D., Iqbal, M., Jalal, F.E., Prakash, I. and Pham, B.T. (2023), "Prediction of interface shear stiffness modulus of asphalt pavement using bagging ensemble-based hybrid machine learning model", Arab. J. Sci. Eng., 48, 13889-13900. https://doi.org/10.1007/s13369-023-08014-1.
- Cassese, P., Riascos, C., Rainieri, C., De Luca, G., Pavese, A. and Bonati, A. (2023), "Experimental study on the in-plane response of cast-in-situ reinforced concrete sandwich walls under combined vertical and horizontal load", Procedia Struct. Integr., 44, 774-781. https://doi.org/10.1016/j.prostr.2023.01.101.
- Chandramouli, P., Jayaseelan, R., Pandulu, G., Sathish Kumar, V., Murali, G. and Vatin, N.I. (2022), "Estimating the axial compression capacity of concrete-filled double-skin tubular columns with metallic and non-metallic composite materials", Mater., 15(10), 3567. https://doi.org/10.3390/ma15103567.
- de Carvalho, A.S., Rossi, A., Morkhade, S.G. and Martins, C.H. (2023), "Machine learning-based design approach for concretefilled stainless steel tubular columns", Arab. J. Sci. Eng., 48(10), 14105-14118. https://doi.org/10.1007/s13369-023-08090-3.
- Dinaharan, I., Palanivel, R., Murugan, N. and Laubscher, R.F. (2020), "Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network", Multidiscip. Model. Mater. Struct., 16(2), 409-423. https://doi.org/10.1108/MMMS-05-2019-0102.
- Dordevic, F. and Kostic, S.M. (2022), "Prediction of ultimate compressive strength of CCFT columns using machine learning algorithms", 8th International Conference Civil Engineering-Science and Practice, Kolasin, Montenegro, March.
- Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2022), "Composite walls composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions", J. Build. Eng., 46, 103715. https://doi.org/10.1016/j.jobe.2021.103715.
- Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, 110448. https://doi.org/10.1016/j.engstruct.2020.110448.
- Farouk, A.I.B. and Jinsong, Z. (2022), "prediction of interface bond strength between ultra-high-performance concrete (UHPC) and normal strength concrete (NSC) using a machine learning approach", Arab. J. Sci. Eng., 47, 5337-5363. https://doi.org/10.1007/s13369-021-06433-6.
- Guo, Y.L., Zhu, J.S., Wang, M.Z., Yang, X. and Zhou, P. (2018), "Overall instability performance of concrete-infilled double steel corrugated-plate wall", Thin Wall. Struct., 130, 372-394. https://doi.org/10.1016/j.tws.2018.05.026.
- Hassan, M.Y. and Arman, H. (2021), "Comparison of six machinelearning methods for predicting the tensile strength (Brazilian) of evaporitic rocks", Appl. Sci., 11(11), 5207. https://doi.org/10.3390/app11115207.
- Hilo, S.J., Hamood, M.J., Al-Zuhairi, A.H., Zand, A.W.A., Kaish, A.B.M.A., Ali, M.M. and Badaruzzaman, W.H.W. (2023), "Structural performance of internally stiffened double-skinned profiled composite walls with openings", Build., 13(6), 1499. https://doi.org/10.3390/buildings13061499.
- Hossain, K.M.A., Lukas K.M. and Muhammed S.A. (2015), "Axial load behaviour of pierced profiled composite walls with strength enhancement devices", J. Constr. Steel Res., 110, 48-64. https://doi.org/10.1016/j.jcsr.2015.03.009.
- Iqbal, M., Zhao, Q., Zhang, D., Jalal, F.E. and Jamal, A. (2021), "Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models", Mater. Struct., 54, 190. https://doi.org/10.1617/s11527-021-01783-x.
- Khan, A Q., Naveed, M.H., Rasheed, M.D. and Miao, P. (2023), "Prediction of compressive strength of fly ash-based geopolymer concrete using supervised machine learning methods", Arab. J. Sci. Eng., 49(4), 4889-4904. https://doi.org/10.1007/s13369-023-08283-w.
- Le, T.T. and Phan, H.C. (2020), "Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method", Adv. Civil Eng., 2020, 8855069. https://doi.org/10.1155/2020/8855069.
- Le, T.T., Asteris, P.G. and Lemonis, M.E. (2022), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 38, 3283-3316. https://doi.org/10.1007/s00366-021-01461-0.
- Lemonis, M., Daramara, A., Georgiadou, A., Siorikis, V., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 42(4), 459-475. https://doi.org/10.12989/scs.2022.42.4.459.
- Li, W., Li, F. and Chen, H. (2022), "Performance of concrete-filled double-skin shallow-corrugated steel plate composite walls under axial compression", J. Constr. Steel Res., 196, 107374. https://doi.org/10.1016/j.jcsr.2022.10737.
- Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concrete, 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
- Luat, N.V., Shin, J. and Lee, K. (2022), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 38, 1421-1450. https://doi.org/10.1007/s00366-020-01115-7.
- Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33, 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
- Ma, X., Butterworth, J.W. and Clifton, G.C. (2008), "Unilateral contact buckling of lightly profiled skin sheets under compressive or shearing loads", Int. J. Solid. Struct., 45, 840-849. https://doi.org/10.1016/j.ijsolstr.2007.09.006.
- Morsy, A.M., Abd Elmoaty, M. and Harraz, A.B. (2022), "Predicting mechanical properties of engineering cementitious composite reinforced with PVA using artificial neural network", Case Stud. Constr. Mater., 16, e00998. https://doi.org/10.1016/j.cscm.2022.e00998.
- Mydin, M.A.O. and Wang, Y.C. (2011), "Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression", Thin Wall. Struct., 49(1), 66-76. https://doi.org/10.1016/j.tws.2010.08.007.
- Nasir, M., Gazder, U., Maslehuddin, M., Baghabra Al-Amoudi, O.S. and Syed, I.A. (2020), "Prediction of properties of concrete cured under hot weather using multivariate regression and ANN models", Arab. J. Sci. Eng., 45, 4111-4123. https://doi.org/10.1007/s13369-020-04403-y.
- Nguyen, H.Q., Ly, H.B., Tran, V.Q., Nguyen, T.A., Le, T.T. and Pham, B.T. (2020a), "Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression", Mater., 13(5), 1205. https://doi.org/10.3390/ma13051205.
- Nguyen, M.H., Trinh, S.H. and Ly, H.B. (2023), "Toward improved prediction of recycled brick aggregate concrete compressive strength by designing ensemble machine learning models", Constr. Build. Mater., 369, 130613. https://doi.org/10.1016/j.conbuildmat.2023.130613.
- Nguyen, M.S.T. and Kim, S.E. (2021), "A hybrid machine learning approach in prediction and uncertainty quantification of ultimate compressive strength of RCFST columns", Constr. Build. Mater., 302, 124208. https://doi.org/10.1016/j.conbuildmat.2021.124208.
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020b), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
- Ozdemir, E. (2022), "A new predictive model for uniaxial compressive strength of rock using machine learning method: Artificial intelligence-based age-layered population structure genetic programming (ALPS-GP)", Arab. J. Sci. Eng., 47(1), 629-639. https://doi.org/10.1007/s13369-021-05761-x.
- Porthur, A.D. and Nair, N. (2022), "Structural performance of composite walls composed of Profiled steel skin and rubberized concrete", Proceedings of SECON'22, Structural Engineering and Construction Management, Springer International Publishing, Cham, Switzerland.
- Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. https://doi.org/10.1016/j.jcsr.2012.10.008.
- Qin, Y., Chen, X., Zhu, X.Y., Xi, W. and Chen, Y.Z. (2020), "Experimental compressive behavior of novel composite wall with different width-to-thickness ratios", Steel Compos. Struct., 36(2), 187-196. https://doi.org/10.12989/scs.2020.35.4.495.
- Raju, M.R., Rahman, M., Hasan, M.M., Islam, M.M. and Alam, M.S. (2023), "Estimation of concrete materials uniaxial compressive strength using soft computing techniques", Heliyon, 9(11), e22502. https://doi.org/10.1016/j.heliyon.2023.e22502.
- Ridha, M.M., Li, D., Clifton, G.C. and Ma, X. (2019), "Structural behavior of composite panels made of lightly profiled steel skins and lightweight concrete under concentric and eccentric loads", J. Struct. Eng., 145(10), 04019093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002380.
- Saed, S.A., Kamboozia, N., Ziari, H. and Hofko, B. (2021), "Experimental assessment and modeling of fracture and fatigue resistance of aged stone matrix asphalt (SMA) mixtures containing RAP materials and warm-mix additive using ANFIS method", Mater. Struct., 54, 225. https://doi.org/10.1617/s11527-021-01812-9.
- Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2021), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., 37, 1-19. https://doi.org/10.1007/s00366-019-00808-y.
- Sarir, P., Jiang, H., Asteris, P.G., Formisano, A. and Armaghani, D.J. (2022), "Iterative finite element analysis of concrete-filled steel tube columns subjected to axial compression", Build., 12(12), 2071. https://doi.org/10.3390/buildings12122071.
- Senthilkumar, R., Karunakaran, P. and Chandru, U. (2023), "Progress and challenges in double skin steel-concrete composite walls: A review", Innov. Infrastruct. Solut., 8, 32. https://doi.org/10.1007/s41062-022-00973-y.
- Taormina, A. (2012), "Axial load behaviour of double skin composite walls subjected to elevated temperatures", M.S.c Thesis, Department of Civil Engineering, Ryerson University, Toronto, ON, Canada.
- Tong, J.Z., Yu, C.Q. and Zhang, L. (2021), "Sectional strength and design of double-skin composite walls with re-entrant profiled faceplates", Thin Wall. Struct., 158, 107196. https://doi.org/10.1016/j.tws.2020.107196.
- Tran, V.L. and Kim, S.E. (2020), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin Wall. Struct., 152, 106744. https://doi.org/10.1016/j.tws.2020.106744.
- Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin Wall. Struct., 151, 106720. https://doi.org/10.1016/j.tws.2020.106720.
- Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, 113505. https://doi.org/10.1016/j.compstruct.2020.113505.
- Wang, M.Z., Guo, Y.L., Zhu, J.S. and Yang, X. (2020), "Flexural-torsional buckling and design recommendations of axially loaded concrete-infilled double steel corrugated-plate walls with T-section", Eng. Struct., 208, 110345. https://doi.org/10.1016/j.engstruct.2020.110345.
- Wang, S., Wang, W., Xie, S. and Chen, Y. (2023), "Behavior and design method of double skin composite wall under axial compression", J. Build. Eng., 64, 105554. https://doi.org/10.1016/j.jobe.2022.105554.
- Wei, Y., Chen, P., Cao, S., Wang, H., Liu, Y., Wang, Z. and Zhao, W. (2023), "Prediction of carbonation depth for concrete containing mineral admixtures based on machine learning", Arab. J. Sci. Eng., 48, 13211-13225. https://doi.org/10.1007/s13369-023-07645-8.
- Yu, C.Q. and Tong, J.Z. (2021), "Compressive behavior of slender profiled double-skin composite walls", J. Constr. Steel Res., 182, 106657. https://doi.org/10.1016/j.jcsr.2021.106657.
- Zarringol, M., Thai, H.T. and Naser, M.Z. (2021), "Application of machine learning models for designing CFCFST columns", J. Constr. Steel Res., 185, 106856. https://doi.org/10.1016/j.jcsr.2021.-106856.
- Zhang, S., Huang, Z. and Guo, L. (2021), "Performance of dovetail profiled steel concrete composite sandwich walls under axial compression", Constr. Build. Mater., 309, 125090, https://doi.org/10.1016/j.conbuildmat.2021.125090.