DOI QR코드

DOI QR Code

Axial load prediction in double-skinned profiled steel composite walls using machine learning

  • G., Muthumari G (Department of Civil Engineering, Mohamed Sathak Engineering College) ;
  • P. Vincent (Department of Civil Engineering, Mepco Schlenk Engineering College)
  • Received : 2023.12.23
  • Accepted : 2024.02.25
  • Published : 2024.06.25

Abstract

This study presents an innovative AI-driven approach to assess the ultimate axial load in Double-Skinned Profiled Steel sheet Composite Walls (DPSCWs). Utilizing a dataset of 80 entries, seven input parameters were employed, and various AI techniques, including Linear Regression, Polynomial Regression, Support Vector Regression, Decision Tree Regression, Decision Tree with AdaBoost Regression, Random Forest Regression, Gradient Boost Regression Tree, Elastic Net Regression, Ridge Regression, and LASSO Regression, were evaluated. Decision Tree Regression and Random Forest Regression emerged as the most accurate models. The top three performing models were integrated into a hybrid approach, excelling in accurately estimating DPSCWs' ultimate axial load. This adaptable hybrid model outperforms traditional methods, reducing errors in complex scenarios. The validated Artificial Neural Network (ANN) model showcases less than 1% error, enhancing reliability. Correlation analysis highlights robust predictions, emphasizing the importance of steel sheet thickness. The study contributes insights for predicting DPSCW strength in civil engineering, suggesting optimization and database expansion. The research advances precise load capacity estimation, empowering engineers to enhance construction safety and explore further machine learning applications in structural engineering.

Keywords

References

  1. Abunassar, N., Alas, M. and Ali, S.I.A. (2023), "Prediction of compressive strength in self-compacting concrete containing fly ash and silica fume using ANN and SVM", Arab. J. Sci. Eng., 48, 5171-5184. https://doi.org/10.1007/s13369-022-07359-3.
  2. Alkayem, N.F., Shen, L., Mayya, A., Asteris, P.G., Fu, R., Di Luzio, G., Strauss, A. and Cao, M. (2023), "Prediction of concrete and FRC properties at high temperature using machine and deep learning: A review of recent advances and future perspectives", J. Build. Eng., 2023, 108369. https://doi.org/10.1016/j.jobe.-2023.108369.
  3. Allouzi, R., Abu-Shamah, A. and Alkloub A. (2022), "Capacity prediction of straight and inclined slender concrete-filled double-skin tubular columns", Multidiscip. Model. Mater. Struct., 18(4), 688-707. https://doi.org/10.1108/MMMS-05-2022-0079.
  4. Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integr., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.
  5. Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, M.G., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.-2020.106167.
  6. Armaghani, D.J. and Asteris, P.G. (2021), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural. Comput. Appl., 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4.
  7. Asteris, P.G. and Mokos, V.G. (2020), "Concrete compressive strength using artificial neural networks", Neural. Comput. Appl., 32(15), 11807-11826. https://doi.org/10.1007/s00521-019-04663-2.
  8. Asteris, P.G., Armaghani, D.J., Hatzigeorgiou, G.D., Karayannis, C.G. and Pilakoutas, K. (2019), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
  9. Asteris, P.G., Koopialipoor, M., Armaghani, D.J., Kotsonis, E.A. and Lourenco, P.B. (2021a), "Prediction of cement-based mortars compressive strength using machine learning techniques", Neural. Comput. Appl., 33(19), 13089-13121. https://doi.org/10.1007/s00521-021-06004-8.
  10. Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021d), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modelling", Eng. Struct., 248, 113297. https://doi.org/10.1016/j.engstruct.2021.113297.
  11. Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Le, H.V. and Pham, B.T. (2021c), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
  12. Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021b), "Soft computing-based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276. https://doi.org/10.1016/j.engstruct.2021.113276.
  13. Bu, L., Du, G. and Hou, Q. (2021), "Prediction of the compressive strength of recycled aggregate", Mater., 14(14), 3921. https://doi.org/10.3390/ma14143921.
  14. Bui, Q.A.T., Nguyen, D.D., Iqbal, M., Jalal, F.E., Prakash, I. and Pham, B.T. (2023), "Prediction of interface shear stiffness modulus of asphalt pavement using bagging ensemble-based hybrid machine learning model", Arab. J. Sci. Eng., 48, 13889-13900. https://doi.org/10.1007/s13369-023-08014-1.
  15. Cassese, P., Riascos, C., Rainieri, C., De Luca, G., Pavese, A. and Bonati, A. (2023), "Experimental study on the in-plane response of cast-in-situ reinforced concrete sandwich walls under combined vertical and horizontal load", Procedia Struct. Integr., 44, 774-781. https://doi.org/10.1016/j.prostr.2023.01.101.
  16. Chandramouli, P., Jayaseelan, R., Pandulu, G., Sathish Kumar, V., Murali, G. and Vatin, N.I. (2022), "Estimating the axial compression capacity of concrete-filled double-skin tubular columns with metallic and non-metallic composite materials", Mater., 15(10), 3567. https://doi.org/10.3390/ma15103567.
  17. de Carvalho, A.S., Rossi, A., Morkhade, S.G. and Martins, C.H. (2023), "Machine learning-based design approach for concretefilled stainless steel tubular columns", Arab. J. Sci. Eng., 48(10), 14105-14118. https://doi.org/10.1007/s13369-023-08090-3.
  18. Dinaharan, I., Palanivel, R., Murugan, N. and Laubscher, R.F. (2020), "Predicting the wear rate of AA6082 aluminum surface composites produced by friction stir processing via artificial neural network", Multidiscip. Model. Mater. Struct., 16(2), 409-423. https://doi.org/10.1108/MMMS-05-2019-0102.
  19. Dordevic, F. and Kostic, S.M. (2022), "Prediction of ultimate compressive strength of CCFT columns using machine learning algorithms", 8th International Conference Civil Engineering-Science and Practice, Kolasin, Montenegro, March.
  20. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2022), "Composite walls composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions", J. Build. Eng., 46, 103715. https://doi.org/10.1016/j.jobe.2021.103715.
  21. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, 110448. https://doi.org/10.1016/j.engstruct.2020.110448.
  22. Farouk, A.I.B. and Jinsong, Z. (2022), "prediction of interface bond strength between ultra-high-performance concrete (UHPC) and normal strength concrete (NSC) using a machine learning approach", Arab. J. Sci. Eng., 47, 5337-5363. https://doi.org/10.1007/s13369-021-06433-6.
  23. Guo, Y.L., Zhu, J.S., Wang, M.Z., Yang, X. and Zhou, P. (2018), "Overall instability performance of concrete-infilled double steel corrugated-plate wall", Thin Wall. Struct., 130, 372-394. https://doi.org/10.1016/j.tws.2018.05.026.
  24. Hassan, M.Y. and Arman, H. (2021), "Comparison of six machinelearning methods for predicting the tensile strength (Brazilian) of evaporitic rocks", Appl. Sci., 11(11), 5207. https://doi.org/10.3390/app11115207.
  25. Hilo, S.J., Hamood, M.J., Al-Zuhairi, A.H., Zand, A.W.A., Kaish, A.B.M.A., Ali, M.M. and Badaruzzaman, W.H.W. (2023), "Structural performance of internally stiffened double-skinned profiled composite walls with openings", Build., 13(6), 1499. https://doi.org/10.3390/buildings13061499.
  26. Hossain, K.M.A., Lukas K.M. and Muhammed S.A. (2015), "Axial load behaviour of pierced profiled composite walls with strength enhancement devices", J. Constr. Steel Res., 110, 48-64. https://doi.org/10.1016/j.jcsr.2015.03.009.
  27. Iqbal, M., Zhao, Q., Zhang, D., Jalal, F.E. and Jamal, A. (2021), "Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models", Mater. Struct., 54, 190. https://doi.org/10.1617/s11527-021-01783-x.
  28. Khan, A Q., Naveed, M.H., Rasheed, M.D. and Miao, P. (2023), "Prediction of compressive strength of fly ash-based geopolymer concrete using supervised machine learning methods", Arab. J. Sci. Eng., 49(4), 4889-4904. https://doi.org/10.1007/s13369-023-08283-w.
  29. Le, T.T. and Phan, H.C. (2020), "Prediction of ultimate load of rectangular CFST columns using interpretable machine learning method", Adv. Civil Eng., 2020, 8855069. https://doi.org/10.1155/2020/8855069.
  30. Le, T.T., Asteris, P.G. and Lemonis, M.E. (2022), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 38, 3283-3316. https://doi.org/10.1007/s00366-021-01461-0.
  31. Lemonis, M., Daramara, A., Georgiadou, A., Siorikis, V., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 42(4), 459-475. https://doi.org/10.12989/scs.2022.42.4.459.
  32. Li, W., Li, F. and Chen, H. (2022), "Performance of concrete-filled double-skin shallow-corrugated steel plate composite walls under axial compression", J. Constr. Steel Res., 196, 107374. https://doi.org/10.1016/j.jcsr.2022.10737.
  33. Luat, N.V., Lee, J., Lee, D.H. and Lee, K. (2020), "GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading", Comput. Concrete, 25(1), 1-14. https://doi.org/10.12989/cac.2020.25.1.001.
  34. Luat, N.V., Shin, J. and Lee, K. (2022), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 38, 1421-1450. https://doi.org/10.1007/s00366-020-01115-7.
  35. Ly, H.B., Pham, B.T., Le, L.M., Le, T.T., Le, V.M. and Asteris, P.G. (2021), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 33, 3437-3458. https://doi.org/10.1007/s00521-020-05214-w.
  36. Ma, X., Butterworth, J.W. and Clifton, G.C. (2008), "Unilateral contact buckling of lightly profiled skin sheets under compressive or shearing loads", Int. J. Solid. Struct., 45, 840-849. https://doi.org/10.1016/j.ijsolstr.2007.09.006.
  37. Morsy, A.M., Abd Elmoaty, M. and Harraz, A.B. (2022), "Predicting mechanical properties of engineering cementitious composite reinforced with PVA using artificial neural network", Case Stud. Constr. Mater., 16, e00998. https://doi.org/10.1016/j.cscm.2022.e00998.
  38. Mydin, M.A.O. and Wang, Y.C. (2011), "Structural performance of lightweight steel-foamed concrete-steel composite walling system under compression", Thin Wall. Struct., 49(1), 66-76. https://doi.org/10.1016/j.tws.2010.08.007.
  39. Nasir, M., Gazder, U., Maslehuddin, M., Baghabra Al-Amoudi, O.S. and Syed, I.A. (2020), "Prediction of properties of concrete cured under hot weather using multivariate regression and ANN models", Arab. J. Sci. Eng., 45, 4111-4123. https://doi.org/10.1007/s13369-020-04403-y.
  40. Nguyen, H.Q., Ly, H.B., Tran, V.Q., Nguyen, T.A., Le, T.T. and Pham, B.T. (2020a), "Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression", Mater., 13(5), 1205. https://doi.org/10.3390/ma13051205.
  41. Nguyen, M.H., Trinh, S.H. and Ly, H.B. (2023), "Toward improved prediction of recycled brick aggregate concrete compressive strength by designing ensemble machine learning models", Constr. Build. Mater., 369, 130613. https://doi.org/10.1016/j.conbuildmat.2023.130613.
  42. Nguyen, M.S.T. and Kim, S.E. (2021), "A hybrid machine learning approach in prediction and uncertainty quantification of ultimate compressive strength of RCFST columns", Constr. Build. Mater., 302, 124208. https://doi.org/10.1016/j.conbuildmat.2021.124208.
  43. Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020b), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
  44. Ozdemir, E. (2022), "A new predictive model for uniaxial compressive strength of rock using machine learning method: Artificial intelligence-based age-layered population structure genetic programming (ALPS-GP)", Arab. J. Sci. Eng., 47(1), 629-639. https://doi.org/10.1007/s13369-021-05761-x.
  45. Porthur, A.D. and Nair, N. (2022), "Structural performance of composite walls composed of Profiled steel skin and rubberized concrete", Proceedings of SECON'22, Structural Engineering and Construction Management, Springer International Publishing, Cham, Switzerland.
  46. Prabha, P., Marimuthu, V., Saravanan, M., Palani, G.S., Lakshmanan, N. and Senthil, R. (2013), "Effect of confinement on steel-concrete composite light-weight load-bearing wall panels under compression", J. Constr. Steel Res., 81, 11-19. https://doi.org/10.1016/j.jcsr.2012.10.008.
  47. Qin, Y., Chen, X., Zhu, X.Y., Xi, W. and Chen, Y.Z. (2020), "Experimental compressive behavior of novel composite wall with different width-to-thickness ratios", Steel Compos. Struct., 36(2), 187-196. https://doi.org/10.12989/scs.2020.35.4.495.
  48. Raju, M.R., Rahman, M., Hasan, M.M., Islam, M.M. and Alam, M.S. (2023), "Estimation of concrete materials uniaxial compressive strength using soft computing techniques", Heliyon, 9(11), e22502. https://doi.org/10.1016/j.heliyon.2023.e22502.
  49. Ridha, M.M., Li, D., Clifton, G.C. and Ma, X. (2019), "Structural behavior of composite panels made of lightly profiled steel skins and lightweight concrete under concentric and eccentric loads", J. Struct. Eng., 145(10), 04019093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002380.
  50. Saed, S.A., Kamboozia, N., Ziari, H. and Hofko, B. (2021), "Experimental assessment and modeling of fracture and fatigue resistance of aged stone matrix asphalt (SMA) mixtures containing RAP materials and warm-mix additive using ANFIS method", Mater. Struct., 54, 225. https://doi.org/10.1617/s11527-021-01812-9.
  51. Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2021), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., 37, 1-19. https://doi.org/10.1007/s00366-019-00808-y.
  52. Sarir, P., Jiang, H., Asteris, P.G., Formisano, A. and Armaghani, D.J. (2022), "Iterative finite element analysis of concrete-filled steel tube columns subjected to axial compression", Build., 12(12), 2071. https://doi.org/10.3390/buildings12122071.
  53. Senthilkumar, R., Karunakaran, P. and Chandru, U. (2023), "Progress and challenges in double skin steel-concrete composite walls: A review", Innov. Infrastruct. Solut., 8, 32. https://doi.org/10.1007/s41062-022-00973-y.
  54. Taormina, A. (2012), "Axial load behaviour of double skin composite walls subjected to elevated temperatures", M.S.c Thesis, Department of Civil Engineering, Ryerson University, Toronto, ON, Canada.
  55. Tong, J.Z., Yu, C.Q. and Zhang, L. (2021), "Sectional strength and design of double-skin composite walls with re-entrant profiled faceplates", Thin Wall. Struct., 158, 107196. https://doi.org/10.1016/j.tws.2020.107196.
  56. Tran, V.L. and Kim, S.E. (2020), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin Wall. Struct., 152, 106744. https://doi.org/10.1016/j.tws.2020.106744.
  57. Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin Wall. Struct., 151, 106720. https://doi.org/10.1016/j.tws.2020.106720.
  58. Vu, Q.V., Truong, V.H. and Thai, H.T. (2021), "Machine learningbased prediction of CFST columns using gradient tree boosting algorithm", Compos. Struct., 259, 113505. https://doi.org/10.1016/j.compstruct.2020.113505.
  59. Wang, M.Z., Guo, Y.L., Zhu, J.S. and Yang, X. (2020), "Flexural-torsional buckling and design recommendations of axially loaded concrete-infilled double steel corrugated-plate walls with T-section", Eng. Struct., 208, 110345. https://doi.org/10.1016/j.engstruct.2020.110345.
  60. Wang, S., Wang, W., Xie, S. and Chen, Y. (2023), "Behavior and design method of double skin composite wall under axial compression", J. Build. Eng., 64, 105554. https://doi.org/10.1016/j.jobe.2022.105554.
  61. Wei, Y., Chen, P., Cao, S., Wang, H., Liu, Y., Wang, Z. and Zhao, W. (2023), "Prediction of carbonation depth for concrete containing mineral admixtures based on machine learning", Arab. J. Sci. Eng., 48, 13211-13225. https://doi.org/10.1007/s13369-023-07645-8.
  62. Yu, C.Q. and Tong, J.Z. (2021), "Compressive behavior of slender profiled double-skin composite walls", J. Constr. Steel Res., 182, 106657. https://doi.org/10.1016/j.jcsr.2021.106657.
  63. Zarringol, M., Thai, H.T. and Naser, M.Z. (2021), "Application of machine learning models for designing CFCFST columns", J. Constr. Steel Res., 185, 106856. https://doi.org/10.1016/j.jcsr.2021.-106856.
  64. Zhang, S., Huang, Z. and Guo, L. (2021), "Performance of dovetail profiled steel concrete composite sandwich walls under axial compression", Constr. Build. Mater., 309, 125090, https://doi.org/10.1016/j.conbuildmat.2021.125090.