참고문헌
- Akkaya, Y., Guner, S. and Vecchio, F.J. (2019), "Constitutive model for inelastic buckling behavior of reinforcing bars", ACI Struct. J., 116(2), 195-204. https://doi.org/10.14359/51711143.
- Bentz, E.C. (2005), "Explaining the riddle of tension stiffening models for shear panel experiments", ASCE J. Struct. Eng., 131(9), 1422-1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422).
- Bhuyan, K. and Sharma, H. (2024), "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast", Reliab. Eng. Syst. Saf., 242, 109683. https://doi.org/10.1016/j.ress.2023.109683.
- Brannon, R.M. and Leelavanichkul, S. (2009), "Survey of four damage models for concrete", Report No. SAND2009-5544; Sandia National Laboratories, Albuquerque, NM, USA.
- Comite Euro International du Beton (1993), CEB-FIP Model Code 1990, Thomas Telford Ltd, London, UK.
- Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, 3rd Edition, Wiley, New York, NY, USA.
- Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006.
- Dauj, S. (2020), "Prediction of concrete spall damage under blast: Neural approach with synthetic data", Comput. Concrete, 26(6), 533-546. https://doi.org/10.12989/cac.2020.26.6.533.
- Dunkman, D.A., Yousef, A.E.A., Karve, P.M. and Williamson, E.B. (2009), "Blast performance of prestressed concrete panels", Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, Austin, TX, USA, April-May.
- ElMohandes, F. and Vecchio, F.J. (2016), "Reliability of temperature-dependent models for analysis of reinforced concrete members subjected to fire", ACI Struct. J., 113(3), 481-490. https://doi.org/10.14359/51688605.
- Jain, P. and Chakraborty, T. (2018), "Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load", Comput. Concrete, 21(4), 399-406. https://doi.org/10.12989/cac.2018.21.4.399.
- Gang, H. and Kwak, H.G. (2017), "A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading", Comput. Concrete, 20(1), 1-10. https://doi.org/10.12989/cac.2017.20.1.001.
- Gangolua, J., Kumarb, A., Bhuyanb, K. and Sharma, H. (2022), "Performance-based probabilistic capacity models for reinforced concrete and prestressed concrete protective structures subjected to missile impact", Int. J. Impact Eng., 164, 104207. https://doi.org/10.1016/j.ijimpeng.2022.104207.
- Gangolu, J., Daudeville, L., Gangolu, A.R. and Sharma, H. (2023), "Improvement of probabilistic models for prediction of missile-impact effects on reinforced concrete protective panels using an experimental and numerical database", ASCE J. Perform. Constr. Facil., 37(5), 04023036. https://doi.org/10.1061/JPCFEV.CFENG-4316.
- Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), "Stress-strain model for confined reinforced concrete in bridge piers", ASCE J. Struct. Eng., 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624).
- Iannitti, G., Bonora, N., Curiale, G., De Muro, S., Marfia, S., Ruggiero, A., Sacco, E., Scafati, S. and Testa, G. (2018), "Analysis of reinforced concrete slabs under blast loading", Struct. Integr. Proc., 9, 272-278. https://doi.org/10.1016/j.prostr.2018.06.035.
- Isojeh, B., El-Zeghayar, M. and Vecchio, F.J. (2019), "Numerical analysis of reinforced concrete and steel-fiber concrete elements under fatigue loading", ASCE J. Struct. Eng., 145(11), 04019126. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002349.
- Jacques, E. (2011), "Blast retrofit of reinforced concrete walls and slabs", Master's Thesis, University of Ottawa, Ottawa, Ontario, Canada.
- Kong, X.Q., Zhao, Q., Qu, Y.D. and Zhang, W.J. (2018), "Blast response of cracked RC slabs repaired with CFRP composite patch", KSCE J. Civil Eng., 22(4), 1214-1224. https://doi.org/10.1007/s12205-017-1054-3.
- Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solid. Struct., 40, 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7.
- Lin, Y., Shunfeng, G. and Weiliang, J. (2008), "Spallation mechanism of RC slabs under contact detonation", J. Trans. Tianjin Univ., 14, 464-469. https://doi.org/10.1007/s12209-008-0079-6.
- Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
- Lulec, A. (2017), "Simplified analytical tools for impact and impulsive loading analysis of reinforced concrete structures", Ph.D. Dissertation, University of Toronto, Toronto, Canada.
- Malvar, L.J. and Crawford, J.E. (1998), "Dynamic increase factor for steel reinforcing bars", 28th DDESB Seminar, Orlando, FL, USA, September.
- Nam, J.W., Yoon, I.S. and Yi, S.T. (2016), "Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load", Comput. Concrete, 17(2), 215-225. https://doi.org/10.12989/cac.2016.17.2.215.
- Newmark, N.M. (1959), "A method of computation for structural dynamics", ASCE J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
- Palermo, D. and Vecchio, F.J. (2003), "Compression field modelling of reinforced concrete subjected to reversed loading: formulation", ACI Struct. J., 100(5), 616-625.
- Park, G.K., Kwak, H.G. and Filippou, C. (2021), "Hysteretic moment-curvature relations for the analysis of RC flexural members subjected to blast loading", Comput. Concrete, 27(6), 537-548. https://doi.org/10.12989/cac.2021.27.6.537.
- Rashad, M. and Yang, T.Y. (2019), "Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model", Comput. Concrete, 23(2), 121-131. https://doi.org/10.12989/cac.2019.23.2.121.
- Robert, S. and Johnson, C. (2009), "Blast response of conventional and high performance reinforced concrete panels", Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, Austin, TX, USA, April-May.
- Saatci, S. and Vecchio, F.J. (2009), "Nonlinear finite element modeling of reinforced concrete structures under impact loads", ACI Struct. J., 106(5), 717-725. https://doi.org/10.14359/51663112.
- Seckin, M. (1981), "Hysteretic behaviour of cast-in-place exterior beam-column-slab subassemblies", Ph.D. Dissertation, University of Toronto, Toronto, Ontario, Canada.
- Tai, Y.S., Chu, T.L., Hu, H.T. and Wu J.Y. (2011), "Dynamic response of a RC slab subjected to air blast load", Theoret. Appl. Fract. Mech., 56(3), 140-147. https://doi.org/10.1016/j.tafmec.2011.11.002.
- Thiagarajan, G. and Johnson, C.F. (2014), "Experimental behavior of reinforced concrete slabs subjected to shock loading", ACI Struct. J., 111(6), 1407-1417. https://doi.org/10.14359/51686970.
- Thiagarajan, G., Kadambi, A.V., Robert, S. and Johnson, C.F. (2015), "Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads", Int. J. Impact Eng., 75, 162-173. https://doi.org/10.1016/j.ijimpeng.2014.07.018.
- USACE-PDC (2019), "Single-degree-of-freedom blast effects design spreadsheet (SBEDS)", Report No. 4213; U.S. Army Corps of Engineers, Protective Design Center, Washington, D.C., USA.
- Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", ASCE J. Struct. Eng., 126(9), 12-20. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070).
- Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", ASCE J. Struct. Eng., 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590).
- Vecchio, F.J. and Selby, R.G. (1991), "Towards compression field analysis of reinforced concrete solids", ASCE J. Struct. Eng., 117(6), 1740-1758. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1740).
- Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5), 431-438. https://doi.org/10.1016/j.compstruc.2005.09.029.
- Yan, J., Liu, Y., Xu, Z., Li, Z. and Huang, F. (2020), "Experimental and numerical analysis of CFRP strengthened RC columns subjected to close-in blast loading", Int. J. Impact Eng., 146, 103720. https://doi.org/10.1016/j.ijimpeng.2020.103720.
- Zhao, C.F. and Chen, J.Y. (2013), "Damage mechanism and mode of square reinforced concrete slab subjected to blast loading", Theoret. Appl. Fract. Mech., 63, 54-62. https://doi.org/10.1016/j.tafmec.2013.03.006.