DOI QR코드

DOI QR Code

Finite element modeling of reinforced and prestressed concrete panels under far-field blast loads using a smeared crack approach

  • Andac Lulec (LARSA Inc.) ;
  • Vahid Sadeghian (Department of Civil and Environmental Engineering, Carleton University) ;
  • Frank J. Vecchio (Department of Civil and Mineral Engineering, University of Toronto)
  • 투고 : 2022.11.11
  • 심사 : 2023.11.15
  • 발행 : 2024.06.25

초록

This study presents a macro-modeling procedure for nonlinear finite element analysis of reinforced and prestressed concrete panels under blast loading. The analysis procedure treats cracked concrete as an orthotropic material based on a smeared rotating crack model within the context of total-load secant stiffness-based formulation. A direct time integration method compatible with the analysis formulation is adapted to solve the dynamic equation of motion. Considerations are made to account for strain rate effects. The analysis procedure is verified by modeling 14 blast tests from various sources reported in the literature including a blast simulation contest. The analysis results are compared against those obtained from experiments, simplified single-degree-of-freedom (SDOF) methods, and sophisticated hydrocodes. It is demonstrated that the smeared crack macro-modeling approach is a viable alternative analysis procedure that gives more information about the structural behavior than SDOF methods, but does not require detailed micro-modeling and extensive material characterization typically needed with hydrocodes.

키워드

참고문헌

  1. Akkaya, Y., Guner, S. and Vecchio, F.J. (2019), "Constitutive model for inelastic buckling behavior of reinforcing bars", ACI Struct. J., 116(2), 195-204. https://doi.org/10.14359/51711143.
  2. Bentz, E.C. (2005), "Explaining the riddle of tension stiffening models for shear panel experiments", ASCE J. Struct. Eng., 131(9), 1422-1425. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1422).
  3. Bhuyan, K. and Sharma, H. (2024), "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast", Reliab. Eng. Syst. Saf., 242, 109683. https://doi.org/10.1016/j.ress.2023.109683.
  4. Brannon, R.M. and Leelavanichkul, S. (2009), "Survey of four damage models for concrete", Report No. SAND2009-5544; Sandia National Laboratories, Albuquerque, NM, USA.
  5. Comite Euro International du Beton (1993), CEB-FIP Model Code 1990, Thomas Telford Ltd, London, UK.
  6. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, 3rd Edition, Wiley, New York, NY, USA.
  7. Cotsovos, D.M. and Pavlovic, M.N. (2008), "Numerical investigation of concrete subjected to high rates of uniaxial tensile loading", Int. J. Impact Eng., 35, 319-335. https://doi.org/10.1016/j.ijimpeng.2007.03.006.
  8. Dauj, S. (2020), "Prediction of concrete spall damage under blast: Neural approach with synthetic data", Comput. Concrete, 26(6), 533-546. https://doi.org/10.12989/cac.2020.26.6.533.
  9. Dunkman, D.A., Yousef, A.E.A., Karve, P.M. and Williamson, E.B. (2009), "Blast performance of prestressed concrete panels", Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, Austin, TX, USA, April-May.
  10. ElMohandes, F. and Vecchio, F.J. (2016), "Reliability of temperature-dependent models for analysis of reinforced concrete members subjected to fire", ACI Struct. J., 113(3), 481-490. https://doi.org/10.14359/51688605.
  11. Jain, P. and Chakraborty, T. (2018), "Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load", Comput. Concrete, 21(4), 399-406. https://doi.org/10.12989/cac.2018.21.4.399.
  12. Gang, H. and Kwak, H.G. (2017), "A tensile criterion to minimize FE mesh-dependency in concrete beams under blast loading", Comput. Concrete, 20(1), 1-10. https://doi.org/10.12989/cac.2017.20.1.001.
  13. Gangolua, J., Kumarb, A., Bhuyanb, K. and Sharma, H. (2022), "Performance-based probabilistic capacity models for reinforced concrete and prestressed concrete protective structures subjected to missile impact", Int. J. Impact Eng., 164, 104207. https://doi.org/10.1016/j.ijimpeng.2022.104207.
  14. Gangolu, J., Daudeville, L., Gangolu, A.R. and Sharma, H. (2023), "Improvement of probabilistic models for prediction of missile-impact effects on reinforced concrete protective panels using an experimental and numerical database", ASCE J. Perform. Constr. Facil., 37(5), 04023036. https://doi.org/10.1061/JPCFEV.CFENG-4316.
  15. Hoshikuma, J., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997), "Stress-strain model for confined reinforced concrete in bridge piers", ASCE J. Struct. Eng., 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624).
  16. Iannitti, G., Bonora, N., Curiale, G., De Muro, S., Marfia, S., Ruggiero, A., Sacco, E., Scafati, S. and Testa, G. (2018), "Analysis of reinforced concrete slabs under blast loading", Struct. Integr. Proc., 9, 272-278. https://doi.org/10.1016/j.prostr.2018.06.035.
  17. Isojeh, B., El-Zeghayar, M. and Vecchio, F.J. (2019), "Numerical analysis of reinforced concrete and steel-fiber concrete elements under fatigue loading", ASCE J. Struct. Eng., 145(11), 04019126. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002349.
  18. Jacques, E. (2011), "Blast retrofit of reinforced concrete walls and slabs", Master's Thesis, University of Ottawa, Ottawa, Ontario, Canada.
  19. Kong, X.Q., Zhao, Q., Qu, Y.D. and Zhang, W.J. (2018), "Blast response of cracked RC slabs repaired with CFRP composite patch", KSCE J. Civil Eng., 22(4), 1214-1224. https://doi.org/10.1007/s12205-017-1054-3.
  20. Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solid. Struct., 40, 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7.
  21. Lin, Y., Shunfeng, G. and Weiliang, J. (2008), "Spallation mechanism of RC slabs under contact detonation", J. Trans. Tianjin Univ., 14, 464-469. https://doi.org/10.1007/s12209-008-0079-6.
  22. Lin, X., Zhang, Y.X. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
  23. Lulec, A. (2017), "Simplified analytical tools for impact and impulsive loading analysis of reinforced concrete structures", Ph.D. Dissertation, University of Toronto, Toronto, Canada.
  24. Malvar, L.J. and Crawford, J.E. (1998), "Dynamic increase factor for steel reinforcing bars", 28th DDESB Seminar, Orlando, FL, USA, September.
  25. Nam, J.W., Yoon, I.S. and Yi, S.T. (2016), "Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load", Comput. Concrete, 17(2), 215-225. https://doi.org/10.12989/cac.2016.17.2.215.
  26. Newmark, N.M. (1959), "A method of computation for structural dynamics", ASCE J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  27. Palermo, D. and Vecchio, F.J. (2003), "Compression field modelling of reinforced concrete subjected to reversed loading: formulation", ACI Struct. J., 100(5), 616-625.
  28. Park, G.K., Kwak, H.G. and Filippou, C. (2021), "Hysteretic moment-curvature relations for the analysis of RC flexural members subjected to blast loading", Comput. Concrete, 27(6), 537-548. https://doi.org/10.12989/cac.2021.27.6.537.
  29. Rashad, M. and Yang, T.Y. (2019), "Improved nonlinear modelling approach of simply supported PC slab under free blast load using RHT model", Comput. Concrete, 23(2), 121-131. https://doi.org/10.12989/cac.2019.23.2.121.
  30. Robert, S. and Johnson, C. (2009), "Blast response of conventional and high performance reinforced concrete panels", Structures Congress 2009: Don't Mess with Structural Engineers: Expanding Our Role, Austin, TX, USA, April-May.
  31. Saatci, S. and Vecchio, F.J. (2009), "Nonlinear finite element modeling of reinforced concrete structures under impact loads", ACI Struct. J., 106(5), 717-725. https://doi.org/10.14359/51663112.
  32. Seckin, M. (1981), "Hysteretic behaviour of cast-in-place exterior beam-column-slab subassemblies", Ph.D. Dissertation, University of Toronto, Toronto, Ontario, Canada.
  33. Tai, Y.S., Chu, T.L., Hu, H.T. and Wu J.Y. (2011), "Dynamic response of a RC slab subjected to air blast load", Theoret. Appl. Fract. Mech., 56(3), 140-147. https://doi.org/10.1016/j.tafmec.2011.11.002.
  34. Thiagarajan, G. and Johnson, C.F. (2014), "Experimental behavior of reinforced concrete slabs subjected to shock loading", ACI Struct. J., 111(6), 1407-1417. https://doi.org/10.14359/51686970.
  35. Thiagarajan, G., Kadambi, A.V., Robert, S. and Johnson, C.F. (2015), "Experimental and finite element analysis of doubly reinforced concrete slabs subjected to blast loads", Int. J. Impact Eng., 75, 162-173. https://doi.org/10.1016/j.ijimpeng.2014.07.018.
  36. USACE-PDC (2019), "Single-degree-of-freedom blast effects design spreadsheet (SBEDS)", Report No. 4213; U.S. Army Corps of Engineers, Protective Design Center, Washington, D.C., USA.
  37. Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: Formulation", ASCE J. Struct. Eng., 126(9), 12-20. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070).
  38. Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", ASCE J. Struct. Eng., 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590).
  39. Vecchio, F.J. and Selby, R.G. (1991), "Towards compression field analysis of reinforced concrete solids", ASCE J. Struct. Eng., 117(6), 1740-1758. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:6(1740).
  40. Xu, K. and Lu, Y. (2006), "Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading", Comput. Struct., 84(5), 431-438. https://doi.org/10.1016/j.compstruc.2005.09.029.
  41. Yan, J., Liu, Y., Xu, Z., Li, Z. and Huang, F. (2020), "Experimental and numerical analysis of CFRP strengthened RC columns subjected to close-in blast loading", Int. J. Impact Eng., 146, 103720. https://doi.org/10.1016/j.ijimpeng.2020.103720.
  42. Zhao, C.F. and Chen, J.Y. (2013), "Damage mechanism and mode of square reinforced concrete slab subjected to blast loading", Theoret. Appl. Fract. Mech., 63, 54-62. https://doi.org/10.1016/j.tafmec.2013.03.006.