DOI QR코드

DOI QR Code

금속 멤브레인 압력 센서에서 압저항체 패턴 형태에 따른 특성 비교

Comparison of the Characteristics of Metal Membrane Pressure Sensors Depending on the Shape of the Piezoresistive Patterns

  • 박준 (한국공학대학교 나노반도체공학과 ) ;
  • 김창규 (한국공학대학교 나노반도체공학과 )
  • Jun Park (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Chang-Kyu Kim (Department of Nano & Semiconductor Engineering, Tech University of Korea)
  • 투고 : 2024.05.02
  • 심사 : 2024.05.21
  • 발행 : 2024.05.31

초록

Development of pressure sensors for harsh environments with high pressure, humidity, and temperature is essential for many applications in the aerospace, marine, and automobile industries. However, existing materials such as polymers, adhesives, and semiconductors are not suitable for these conditions and require materials that are less sensitive to the external environment. This study proposed a pressure sensor that could withstand harsh environments and had high durability and precision. The sensor comprised a piezoresistor pattern and an insulating film directly formed on a stainless-steel membrane. To achieve the highest sensitivity, a pattern design method was proposed that considered the stress distribution in a circular membrane using finite element analysis. The manufacturing process involved depositing and etching a dielectric insulating film and metal piezoresistive material, resulting in a device with high linearity and slight hysteresis in the range of a maximum of 40 atm. The simplicity and effectiveness of this sensor render it a promising candidate for various applications in extreme environments.

키워드

과제정보

본 논문은 2023년도 정부(과학기술정보통신부)의 재원으로 과학기술사업화진흥원(2023openlab(RnD) _01)과 정부(교육부)의 재원으로 한국연구재단(NRF- 2020R1F1A1048254)의 지원을 받아 수행된 연구임.

참고문헌

  1. Y. Zhao, Y. Liu, Y. Li, and Q. Hao, "Development and Application of Resistance Strain Force Sensors", Sensors, Vol. 20, No. 20, pp. 5826(1)-5826(18), 2020. 
  2. H.-D. Ngo, O. Ehrmann, M. Schneider-Ramelow, and K.-D. Lang, "Piezoresistive Pressure Sensors for Applications in Harsh Environments-A Roadmap," in Modern Sensing Technologies, S. C. Mukhopadhyay, K. P. Jayasundera, and O. A. Postolache, Eds. Springer, Switzerland, pp. 231-252, 2019. 
  3. W. F. Quiros-Solano, N. Gaio, C. Silvestri, G. Pandraud, R. Dekker, and P. M. Sarro, "Metal and Polymeric Strain Gauges for Si-Based, Monolithically Fabricated Organs-on-Chips", Micromachines, Vol. 10, No. 8, pp. 536(1)-536(15), 2019. 
  4. S. Ghildiyal, R. Balasubramaniam, and J. John, "Diamond turned micro machined metal diaphragm based Fabry Perot pressure sensor", Opt. Laser Technol., Vol. 128, pp. 106243(1)-106243(7), 2020. 
  5. C.-L. Dai, Y.-W. Tai, and P.-H. Kao, "Modeling and Fabrication of Micro FET Pressure Sensor with Circuits", Sensors, Vol. 7, No. 12, pp. 3386-3398, 2007. 
  6. Y. Jung and H. Cho, "Flexible Pressure Sensors Based on Three-dimensional Structure for High Sensitivity", J. Sens. Sci. Technol., Vol. 31, No. 3, pp. 145-150, 2022. 
  7. S.-P. Chang and M. G. Allen, "Capacitive pressure sensors with stainless steel diaphragm and substrate", J. Micromech. Microeng., Vol. 14, No. 4, pp. 612-618, 2004. 
  8. C. Pramanik, H. Saha, and U. Gangopadhyay, "Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications", J. Micromech. Microeng., Vol. 16, No. 10, pp. 2060-2066, 2006. 
  9. G.-S. Chung, W.-J. Lee, and J.-S. Song, "Charateristics of Chromium Nitride Thin-Film Strain Gauges", Sens. Mater., Vol. 13, No. 1, pp. 13-23, 2001. 
  10. M. Moradi and S. Sivoththaman, "Strain Transfer Analysis of Surface-Bonded MEMS Strain Sensors", IEEE Sens. J., Vol. 13, No. 2, pp. 637-643, 2013. 
  11. D.-Y. Lim, T. W. Ha, and C.-H. Lee, "Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene", J. Sens. Sci. Technol., Vol. 32, No. 6, pp. 470-474, 2023. 
  12. H. Gerdes, R. Bandorf, U. Heckmann, V. Schmidt, H.-U. Kricheldorf, and G. Brauer, "Sputter Deposition of Strain Gauges Using ITO/Ag", Plasma Process. Polym., Vol. 6, No. S1, pp. S813-S816, 2009. 
  13. D. Klaas, R. Ottermann, F. Dencker, and M. C. Wurz, "Development, Characterisation and High-Temperature Suitability of Thin-Film Strain Gauges Directly Deposited with a New Sputter Coating System", Sensors, Vol. 20, No. 11, pp. 3294(1)-3294(15), 2020. 
  14. S. Meti, K. B. Balavald, and B. G. Sheeparmatti, "MEMS Piezoresistive Pressure Sensor: A Survey", Int. J. Eng. Res. Appl., Vol. 6, No. 4, pp. 23-31, 2016. 
  15. K. Yamada, M. Nishihara, S. Shimada, M. Tanabe, M. Shimazoe, and Y. Matsuoka, "Nonlinearity of the Piezoresistance Effect of p-Type Silicon Diffused Layers", IEEE Trans. Electron. Device., Vol. 29, No. 1, pp. 71-77, 1982. 
  16. F. Alfaro, G. van Sprakelaar, and J. Gaynor, "Harsh environment piezoresistive pressure sensors", Proc. of 2017 IEEE SENSORS, pp. 1-3, Glasgow, UK, 2017. 
  17. H. Zhang, H. Xu, Y. Li, Z. Song, H. San, and Y. Yu, "A Si-Glass based Pressure Sensor with A Single piezoresistive element for Harsh Environment Applications", Proc. of IEEE NEMS 2013, pp. 348-351, Suzhou, China, 2013. 
  18. http://www.tokkin.co.jp/ (retrieved on Apr. 2, 2024).