DOI QR코드

DOI QR Code

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee (Department of Civil Engineering, Daejin University) ;
  • MuYeun Kim (Department of Technology Research, IWENC. Co. Ltd.) ;
  • TaeHyun Hwang (Department of Civil Engineering, Daejin University)
  • Received : 2023.11.20
  • Accepted : 2024.05.13
  • Published : 2024.06.10

Abstract

Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

Keywords

References

  1. Ahmed, D., Bttaib, S.N.L., Ayadat, T. and Hasan, A. (2022), "Numerical analysis of the carrying capacity of a piled raft foundation in soft clayey soils", Civil Eng. J., 8(4), 622-636. https://doi.org/10.28991/CEJ-2022-08-04-01.
  2. Azzam, W.R. and Basha, A.M. (2018), "Utilization of micro-piles for improving the sub-grade under the existing strip foundation: experimental and numerical study", Innov. Infrastruct. Solutions, 3, 1-11. https://doi.org/10.1007/s41062-018-0149-0.
  3. Capatti, M.C., Dezi, F., Carbonari, S. and Gara, F. (2020), "Dynamic performance of a full-scale micropile group relevance of nonlinear behaviour of the soil adjacent to micropiles", Soil Dyn. Earthq. Eng., 128, 105858. https://doi.org/10.1016/j.soildyn.2019.105858.
  4. Das, B.M. (1983), Advanced Soil Mechanics (International Edition), McGraw-Hill, Washington, DC, USA.
  5. Das, B.M. (2011), Principle of Foundation Engineering (7th Ed.), Cengage Learning, Boston, Massachusetts, USA.
  6. Day, R.A. and Potts, D.M. (1994), "Zero thickness interface elements numerical stability and application", Int. J. Numer. Anal. Method. Geomech., 18(10), 689-708. https://doi.org/10.1002/nag.1610181003.
  7. Ebadi‑Jamkhaneh, M. and Kontoni, D.P.N. (2023), "Static analysis of prestressed micropile‑raft foundation with varying lengths resting on sandy soil", Innov. Infrastruct. Solut., 8(3), 106. https://doi.org/10.1007/s41062-023-01076-y.
  8. El Kamash, W. and Han, J. (2017), "Numerical analysis of existing foundations underpinned by micropiles", Int. J. Geomech., 17(6), 04016126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000833
  9. El Kamash, W., El Naggar, H., Nabil, M. and Ata, A. (2020), "Optimizing the unconnected piled raft foundation for soft clay soils: numerical study", J. Civil Eng. - KSCE, 24(4), 1095-1102. https://doi.org/10.1007/s12205-020-0567-3.
  10. Elsawwaf, A., Nazir, A. and Azzam, W. (2022), "The effect of combined loading on the behavior of micropiled rafts installed with inclined condition", Environ. Sci. Pollut. Res., 29, 81321-81336. https://doi.org/10.1007/s11356-022-21327-2/
  11. Elsawwaf, A., El Sawwaf, M., Farouk, A., Aamer, F. and El Naggar, H. (2023), "Restoration of tilted buildings via micropile underpinning: A case study of a multistory building supported by a raft foundation", Buildings, 13(2), 422, https://doi.org/10.3390/buildings13020422.
  12. Elwakil, A.Z and Azzam, W.R. (2016). "Experimental and numerical study of piled raft system", Alexandria Eng. J., 55(1), 547-560. https://doi.org/10.1016/j.aej.2015.10.001.
  13. Elsawwaf, A., El Sawwaf, M., Nazir, A., Azzam, W., Farouk, A. and Etman, E. (2023), "Consolidation effect on the behavior of micropiled rafts under combined loading: Case study", Arabian J. Sci. Eng., 48(10), 13429-13448. https://doi.org/10.1007/s13369-023-07806-9.
  14. FHWA (2005), "Micropiles design and construction", US Department of Transportation, Washington, DC, USA.
  15. Han, J. and Ye, S.L. (2006), "A field study on the behavior of a foundation underpinned by micropiles", Can. Geotech. J., 43(1), 30-42. https://doi.org/10.1139/t05-087.
  16. Hwang, E.P., Yang, W.Y. and Lee, K.I. (2019), "Reinforcement effect of micropile according to the pile section change", J. Korean Soc. Hazard Mitigation, 19(2), 185-195. https://doi.org/10.9798/KOSHAM.2019.19.2.185.
  17. Hwang, T.H. and Kwon, O.Y. (2011), "Installation methods of micropiles by the length ratio of pile and the depth of rock layer", J. Korean Geotech. Soc., 27(4), 5-20. https://doi.org/10.7843/kgs.2011.27.4.005.
  18. Hwang, T.H., Kim, K.H. and Shin, J.H. (2017), "Effective installation of micropiles to enhance bearing capacity of micropiled raft", Soils Found., 57(1), 36-49. https://doi.org/10.1016/j.sandf.2017.01.003.
  19. Hwang, T.H., Cho, J.M. and Lee, Y.S. (2022), "Calculation method for settlement of micropile installed in rock layers through field tests", Geomech. Eng., 31(2), 197-208. https://doi.org/10.12989/gae.2022.31.2.197.
  20. Jang. Y.E. and Han, J.T. (2018), "Field study on axial bearing capacity and load transfer characteristic of waveform micropile", Can. Geotech. J., 13, 653-665. https://doi.org/10.1139/cgj-2017-0155.
  21. KGS (2018), "Structure foundation design standards and commentary", Korean Geotechnical Society, Korea.
  22. Khanmohammadi, M. and Fakharian, K. (2018), "Evaluation of performance of piled-raft foundations on soft clay: A case study", Geomech. Eng., 14(1), 43-50. https://doi.org/10.12989/gae.2018.14.1.043.
  23. KR (2014), "KR C-10010 Concrete bridge design principles and materials", Korea national railway(KR), Korea.
  24. Lopes, F.R., D'Hyppolito, L.C.B.S., Danziger, F.A.B. and Becker, L.B. (2020), "Settlements during underpinning with different processes: Case of a hospital in Rio de Janeiro, Brazil", J. Geotech. Geoenviron. Eng., 146(6), https://doi.org/10.1061/(ASCE)GT.1943-5606.0002266.
  25. Lupattelli, A., Bourne-Webb, P.J, Freitas, T.M.B. and Salciarini, D. (2023), "A numerical study of the behavior of micropile foundations under cyclic thermal loading", Appl. Sci., 13(17), https://doi.org/10.3390/app13179791.
  26. MIDAS (2010), "Manual of MIDAS GTS: Application Method and Input Material Properties of Interface Element", MIDAS IT, Korea.
  27. Moradi, M.H., Keramati, M., Ramesh, A. and Naderi, R. (2021), "Experimental valuation of the effects of structural parameters installation methods and soil density on the micropile bearing capacity", Int. J. Civil Eng., 19(11), 1313-1325. https://doi.org/10.1007/s40999-021-00629-5.
  28. Potyondy, J.G. and Eng, M. (1961), "Skin Friction between Various Soils and Construction Materials", Geotechnique, 11(4), 339-353. https://doi.org/10.1680/geot.1961.11.4.339.
  29. Qian, Z.Z. and Lu, X.L., Yang, W.Z. and Cui, Q. (2014), "Behaviour of micropiles in collapsible loess under tension or compression load", Geomech. Eng., 7(5), 477-493. http://dx.doi.org/10.12989/gae.2014.7.5.477.
  30. Shamy, E.N., Ahmed, S.M. and Abdel-Motaal, M.A. (2020), "Seismic response of multi-story structure strengthened with micropiles", Int. J. Eng. Adv. Tech., 9(6). https://doi.org/10.35940/ijeat.f1511.089620.
  31. Shin, J.H. (2015), "Geomecanics & Engineering: behavior and modelling", CIR, Seoul, Korea.
  32. Tsukada, Y., Miura, K., Tsubokawa, Y., Otani, Y. and You, G. (2006), "Mechanism of bearing capacity of spread footings reinforcing with micropiles", Soils Found., 46(3), 367-376. https://doi.org/10.3208/sandf.46.367.
  33. Wang, C., Han, J.T. and Jang, Y.E. (2019), "Experimental investigation of micropile stiffness affecting the underpinning of an existing foundation", Appl. Sci., 9(12), 2495. https://doi.org/10.3390/app9122495.
  34. Wang, C., Han, J.T., Kim, S.J. and Jang, Y.E. (2021), "A novel preloading method for foundation underpinning for the remodeling of an existing building", Geomech. Eng., 24(1), 29-42. https://doi.org/10.12989/gae.2021.24.1.029.
  35. Wen, L., Kong, G., Abuel-Naga, H., Li, Q. and Zhang, Z. (2020), "Rectification of tilted transmission tower using micropile underpinning method", J. Perform. Constr. Fac., 34(1), https://doi.org/10.1061/(ASCE)CF.1943-5509.0001398.
  36. Zhuang, Y., Hu, S. and Fun, H. (2023), "Bearing capacity of foundation and soil arching in rigid floating piled embankments: Numerical study", Appl. Sci., 13(18), 10296. https://doi.org/10.3390/app131810296.