Acknowledgement
The authors are grateful to Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment of Tianjin Chengjian University for their support.
References
- Abdallah, H.M., Rabab'Ah, S.R., Taamneh, M.M., Taamneh, M.O. and Shadi, H. (2023), "Effect of zeolitic tuff on strength, resilient modulus, and permanent strain of lime-stabilized expansive subgrade soil", J. Mater. Civil Eng., 35(5), 4023081. http://doi.org/10.1061/(ASCE)MT.1943-5533.0004710.
- Abdi, M.R. and Mirzaeifar, H. (2016), "Effects of discrete short polypropylene fibers on behavior of artificially cemented kaolinite", Int. J. Civil Eng., 14(4), 253-262. https://doiorg/10.1007/s40999-016-0022-5.
- Amir, S., Robert, D.J., Brian, O., Sujeeva, S., Anoop, S. and Frank, T. (2023), "Investigation of enzyme-based soil stabilization in field application", J. Mater. Civil Eng., 35(5), 4023086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004742.
- Baghini, M.S., Ismail, A., Naseralavi, S.S. and Firoozi, A.A. (2014), "Performance evaluation of road base stabilized with styrene-butadiene copolymer latex and Portland cement", Int. J. Pavement Res. Tech., 9(4), 321-336. https://doi.org/10.1016/j.conbuildmat.2014.06.061.
- Baldovino, J.A., Moreira, E.B., Teixeira, W., Izzo, R.L.S. and Rose, J.L. (2018), "Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil", J. Rock Mech. Geotech. Eng., 10(1), 188-194. https://doi.org/10.1016/j.jrmge.2017.10.001.
- Berkowitza, J.F., VanZomerena, C.M., Piercya, C.D. and Whiteb, J.R. (2018), "Evaluation of coastal wetland soil properties in a degrading marsh. Estuarine", Coast. Shelf Sci., 212, 311-317. https://doi.org/10.1016/j.ecss.2018.07.021.
- Bozbey, I., Kelesoglu, M.K., Oztoprak, S., Komut, M., Comez, S., Ozturk, T., Mert, A. and Ocal, K. (2021), "Effects of soaking on a lime stabilized clay and implications for pavement design", Geomech. Eng., 24(2), 115-127. https://doi.org/10.12989/gae.2021.24.2.115.
- Chai, S.X. (2006), "Study on the special properties of strength of solidified saline soil in inshore", Ph.D. Dissertation, Lanzhou University, Lanzhou, China.
- Driss, A.A.E., Harichane, K., Ghrici, M., Sert, S. and Bol, E. (2023), "Effect of natural pozzolana on the unconsolidated undrained shear strength of a lime-stabilized clay soil", Int. J. Civil Eng., 21, 1007-1026. https://doi.org/10.1007/s40999-023-00817-5.
- Esmaeili, M., Naderi, B., Kalantar, H. and Khodaverdian, N. (2018), "Investigating the effect of geogrid on stabilization of high railway embankments", Soils Found., 58(2), 319-332. https://doi.org/10.1016/j.sandf.2018.02.005.
- GB/T50123 (2019), Standard for geotechnical testing method. Ministry of Housing and Urban-rural Development of the Peoples Republic of China; Beijing, China.
- Gilazghi, S.T., Huang, J. and Rezaeimalek, S. (2016), "Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization", Eng. Geol., 211, 171-178. https://doi.org/10.1016/j.enggeo.2016.07.007.
- Jin, H., Zhang, G. and Yang, Y. (2021), "Experimental and numerical study on behavior of retaining structure with limited soil", Geomech. Eng., 26(1), 77-88. https://doi.org/10.12989/gae.2021.26.1.077.
- JTG E60 (2008), Field test methods of subgrade and pavement for highway engineering, Ministry of Transport of the People's Republic of China; Beijing, China.
- JTG D30 (2015), Specifications for Design of Highway Subgrades. Ministry of Transport of the People's Republic of China; Beijing, China.
- JTG/T F20 (2015), Technical Guidelines for Construction of Highway Roadbases. Ministry of Transport of the People's Republic of China; Beijing, China.
- Kannan, G. and Sujatha, E.R. (2022), "Geotechnical behaviour of nano-silica stabilized organic soil", Geomech. Eng., 28(3), 239-253. https://doi.org/10.12989/gae.2022.28.3.239.
- Okonta, F.N. and Nxumalo, S.P. (2022), "Strength properties of lime stabilized and fibre reinforced residual soil", Geomech. Eng., 28(1), 38-48. https://doi.org/10.12989/gae.2022.28.1.035.
- Pastor Navarro, J.L., Chai, J.C. and Isidro, S. (2023), "Strength and microstructure of a clayey soil stabilized with natural stone industry waste and lime or cement", Appl. Sci., 13, 2583, 1-18. https://doi.org/10.3390/app13042583.
- Phanikumar, B.R. and Raju, E.R. (2020), "Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement", Soils Found., 60(1), 129-138. https://doi.org/10.1016/j.sandf.2020.01.007.
- Ramesh, H.N., Kulkarni, M.G.R., Raghunandan, M.E. and Nethravathi, S. (2022), "Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil", Geomech. Eng., 28(3), 255-263. https://doi.org/10.12989/gae.2022.28.3.255.
- Sharma, L.K., Sirdesai, N.N., Sharma, K.M. and Singh, T.N. (2018), "Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study", Appl. Clay Sci., 152(2), 183-195. http://doi.org/10.1002/2014GL061231.
- Shen, J., Wang, Q., Chen, Y., Han, Y., Zhang, X. and Liu, Y. (2022), "Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles", Eng. Geol., 304, 106699. https://doi.org/10.1016/j.enggeo.2022.106699.
- Shivanshi, A.K. Jha and Akhtar, M.P. (2023), "Investigating effect of soluble sodium sulphate contamination on swell behaviour of untreated and lime-treated soil", Indian Geotech. J., 53, 1114-1128. https://doi.org/10.1007/s40098-023-00731-6.
- Sukmak, G., Sukmak, P., Horpibulsuk, S., Arulrajah, A. and Horpibulsuk, J. (2023), "Generalized strength prediction equation for cement stabilized clayey soils". Appl. Clay Sci., 231(1), 106761.1-106761.9. https://doi.org/10.1016/j.clay.2022.106761.
- Toprak, B., Base, S. and Kalkanl, I. (2021), "Effects of fly ash column treatment of HP clayey soils on seismic behavior of R/C structures", Geomech. Eng., 25(6), 473-480. https://doi.org/10.12989/gae.2021.25.6.473.
- Wang, F., Peng, S.Q., Fan, L. and Li, Y. (2022), "Mechanism of pore relative humidity on salt swelling characteristics in sulfate saline soil", Alexandria Eng. J., 61(2), 4963-4976. https://doi.org/10.1016/j.aej.2021.09.062.
- Wang, Y.L., Chai, S.X. and Li, M. (2018), "Rain erosion resistance of debris flow fan sprayed by SH agent on surface", J. Eng. Geol., 26(2), 334-340. https://doi.org/10.13544/j.cnki.jeg.2017-015.
- Wei, L., Chai, S.X., Guo, Q.L., Wang, P. and Li, F. (2020), "Mechanical properties and stabilizing mechanism of stabilized saline soils with four stabilizers", Bull. Eng. Geol. Environ., 79, 5341-5354. https://doi.org/10.1007/s10064-020-01885-w.
- Wei, L. and Chai, S.X. (2018), "Evaluation of solidifying effect of SH agent on inshore saline soils", J. Eng. Geol., 26(2), 407-415. https://doi.org/10.13544/j.cnki.jeg.2017-004.
- Yousif, A.S. and Mustafa, F.S. (2021), "Behavior of saline soil stabilized with polypropylene fiber and cement", Kufa J. Eng., 12(1), 29-47. https://doi.org/10.30572/2018/kje/120103.
- Zhang, X., Pang, S., Su, L., Geng, J., Liu, J. and Cai, G. (2022), "Triaxial mechanical properties and microscopic characterization of fiber-reinforced cement stabilized aeolian sand-coal gangue blends", Constr. Build. Mater., 346(5), 1-13. https://doi.org/10.1016/j.conbuildmat.2022.128481.