References
- Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2023), " A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force", J. Mech. Mater. Struct., 18(1), 125-141. https://doi.10.2140/jomms.2023.18.125.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos B, 96, 136-52.https://doi.org/10.1016/j.compositesb.2016.04.035.
- Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2013), "Thermal buckling and free vibration analysis of heated functionally graded material beams", Defense Sci. J., 63, 315-322. https://doi.org/10.14429/dsj.63.2370.
- Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, G.V. (2013), "Thermal buckling and free vibration analysis of heated functionally graded material beams", Defense Sci. J., 63, 315-322. https://DOI: 10.14429/dsj.63.2370.
- ANSYS (2007), Inc. ANSYS package version 10.0, Canonsburgh, PA, USA. Ch. 14.3.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. https://doi.org/10.1177/0731684407081369.
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008.
- Babaei, H., M.R. Eslami, M.R. and Khorshidvand, A.R. (2020), "Thermal buckling and post-buckling responses of geometrically imperfect FG porous beams based on physical neutral plane", J. Therm. Stresses, 43(1), 109-131. https://doi.org/10.1080/01495739.2019.1660600.
- Bodaghi, M. and Saidi, A.R. (2011), "Thermoelastic buckling behavior of thick functionally graded rectangular plates", Arch. Appl. Mech., 81, 1555-1572. https://doi.org/10.1007/s00419-010-0501-0.
- Chen, W.R., Chen, C.S. and Chang, H. (2020), "Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties", J. Appl. Comput. Mech., 6(3), 457-470. https://doi.org/10.22055/JACM.2019.30449.1734.
- Chen, W.R., Chen, C.S. and Chang, H. (2019), "Thermal buckling of temperature-dependent functionally graded Timoshenko beams", Arch. Mech. Eng., 66(4), 393-415. https://doi.org/10.24425/ame.2019.131354.
- Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
- Darijani, H. and Shahdadi, A.H. (2015), "A new shear deformation model with modified couple stress theory for microplates", Acta Mechanica, 226, 2773-2788. https://doi.org/10.1007/s00707-015-1338-y.
- Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
- Esfahani, S.E., Kiani, Y. and Eslami, M.R. (2013), "Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007.
- Faleh, N.M., Abboud, I.K. and Nori, A.F. (2020), "Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects", Smart Struct. Syst., 25(6), 707-717. https://doi.org/10.12989/sss.2020.25.6.707.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020), "Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation", Smart Struct. Syst., 26(1), 77-87. https://doi.org/10.12989/sss.2020.26.1.077.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62. https://doi.org/10.12989/cme.2022.4.1.043.
- Hosseini, M., Farhatnia, F. and Oveissi, S. (2018), "Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via Stokes' transformation technique", Res. Eng. Struct. Mater., 4, 103-125. https://doi.org/110.17515/resm2016.83me1018.
- Hosseini, M., Farhatnia, F. and Oveissi. S. (2018), "Functionally graded Timoshenko beams with elastically-restrained edge supports: thermal buckling analysis via Stokes' transformation technique", Res. Eng. Struct. Mater., 42(2), 103-125. https://doi:10.17515/resm2016.83me1018.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101.
- Huang, Y., Zhang, M. and Rong, H.W. (2016), "Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko theory", Acta Mechanica Solid a Sinica, 29(2), 200-207. https://doi.org/10.1016/S0894-9166(16)30108-2.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9.
- Karamanli, A., Vo, T.P. and Eltaher, M.A. (2024), "Comprehensive analysis of bio-inspired laminated composites plates using a quasi-3D theory and higher order FE models", Thin-Walled Struct., 111735. https://doi.org/10.1016/j.tws.2024.111735.
- Karamanli, A., Vo, T.P. and Eltaher, M.A. (2024), "Transient analysis of bio-inspired shear and normal deformable laminated composite plates using a higher-order finite element model", Mech. Based Des. Struc., 1-25. https://doi.org/10.1080/15397734.2024.2341819.
- Kiani, Y. (2017), "Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method", Thin-Walled Struct., 119, 47-57. https://doi.org/10.1016/j.tws.2017.05.031.
- Kiani, Y. and Mirzaei, M. (2018), "Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method", Aerosp. Sci. Technol., 77, 388-398. https://doi.org/10.1016/j.ast.2018.03.022.
- Kirlangic, O. and Akbas, S.D. (2021), "Dynamic responses of functionally graded and layered composite beams", Smart Struct. Syst., 27(1), 115-122. https://doi.org/10.12989/sss.2021.27.1.115.
- Koizumi, M. (1993), "The concept of FGM Ceramic Transactions", Functionally Gradient Mater., 34, 3-10.
- Koizumi, M. (1997), "FGM activities in Japan", Composites: Part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
- Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.
- Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), "Thermal post-buckling of functionally graded material timoshenko beams", Appl. Math. Mech., 27, 803-810. https://doi.org/10.1007/s10483-006-0611-y
- Li, S.R. and Batra, R.C. (2013), "Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams", Compos. Struct., 95, 5-9. https://doi:10.1016/j.compstruct.2012.07.027.
- Li, S.R., Wang, X. and Wan, Z. (2015), "Classical and homogenized expressions for buckling solutions of functionally graded material Levinson beams", Acta Mechanica Solida Sinica, 28(5), 592-604. https://doi:10.1016/S0894-9166(15)30052-5
- Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427
- Madenci, E. and Ozutok, A. (2020) "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Majumdar A. and Das. D. (2018) "A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness", Proceedings of the Institution of Mechanical Engineers, Part L: J. Materials: Design Appl., 232(9), 769-784. https://doi.org/10.1177/1464420716649213.
- Majumdar, A. and Debabrata D. (2018), "A study on thermal buckling load of clamped functionally graded beams under linear and nonlinear thermal gradient across thickness", Proceedings of the Institution of Mechanical Engineers, Part L: J. Materials: Design Appl., 232(9), 769-784. https://doi.org/10.1177/1464420716649213.
- Mantari, J.L. and Granados, E.V. (2015a), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B: Eng., 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028
- Mantari, J. L., & Granados, E. V. (2015b), "A refined FSDT for the static analysis of functionally graded sandwich plates", Thin-Walled Struct., 90, 150-158. https://doi.org/10.1016/j.tws.2015.01.015.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated and sandwich plates", Int. J. Solids Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008.
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "New higher orders shear deformation theory for sandwich and composite laminated plates", Compos. Part B-Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mohamed, S.A., Assie, A.E., Eltaher, M.A., Abo-bakr, R.M. and Mohamed, N. (2024), "Nonlinear postbuckling and snap-through instability of movable simply supported BDFG porous plates rested on elastic foundations", Mech. Based Des. Struc., 1-28. https://doi.org/10.1080/15397734.2024.2328339.
- Mohammadi, H. (2021), "Isogeometric free and forced vibration analyses of FG-CNTs plates based on a logarithmic higher-order shear deformation theory", Mech. Adv. Compos. Struct., 8(2), 435-453. https://doi.org/10.22075/macs.2021.23147.1334.
- Mohammadi, H. (2022), "Isogeometric thermal buckling analysis of GPL reinforced composite laminated folded plates", Eng. Struct., 255, 113905. https://doi.org/10.1016/j.engstruct.2022.113905.
- Mohammadi, H. (2023), "Isogeometric approach for thermal buckling analysis of FG graphene platelet reinforced composite trapezoidally corrugated laminated panels", Eng. Anal. Bound. Elemen., 151, 244-254. https://doi.org/10.1016/j.enganabound.2023.03.007.
- Mohammadi, H. (2023), "On the mechanical buckling analysis of FG-GRC laminated plates with temperature-dependent material properties using isogeometric approach", Int. J. Struct. Stab. Dynam., 23(8), 2350092. https://doi.org/10.1142/S021945542350092X.
- Mohammadi, H. (2023), "Isogeometric free vibration analysis of trapezoidally corrugated FG-GRC laminated panels using higher-order shear deformation theory", In Structures, 48, 642-656. https://doi.org/10.1016/j.istruc.2023.01.001.
- Mohammadi, H. and Shojaee, M. (2024), "Application of isogeometric method for shear buckling study of graded porous nanocomposite folded plates", Arch. Appl. Mech., 94(2), 315-331. https://doi.org/10.1007/s00419-023-02522-0.
- Mohammadi, H., Weeger, O. and Shojaee, M. (2022), "Isogeometric technique for dynamic instability analysis of nanocomposite folded plates based on higher-order shear deformation theory", Thin-Walled Struct., 177, 109467. https://doi.org/10.1016/j.tws.2022.109467.
- Nguyen, N.T., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for size-dependent analysis of functionally graded nanoplates", Comput. Method. Appl. M., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021.
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B, 55, 147-157. https://doi:10.1016/j.compositesb.2013.06.011.
- Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
- Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM J. Appl. Math. Mechanics/Zeitschriftfur Angewandte Mathematik und Mechanik, 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
- Ozdemir, M.E. and Yaylaci, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind Struct., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
- Pai, P.F. (1995) "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solids Struct., 32(16), 2295-2313. https://doi:10.1016/0020-7683(94)00258-x.
- Panda, S.K. and Singh, B.N. (2013) "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Tech., 29(1), 47-57. https://doi:10.1016/j.ast.2013.01.007.
- Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247.
- Praveen, G. N. and Reddy, J. N. (1998) "Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-metal Plates," Inter. J. Solids Struct., 35, 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., BachirBouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (1984) "A simple higher-order theory for laminated composite plates", J Appl Mech, 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. (1984) "A simple higher-order theory for laminated composite plates," Journal of Applied Mechanics, 51(4), 745-752. https://doi.org/10.1115/1.3167719.
- Reddy, J.N. and Chin, C.D. (1998) "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.
- Rychlewska, J. (2014) "Buckling analysis of axially functionally graded beams," Journal of Applied Mathematics and Computational Mechanics, 13(4), 103-108.https://doi.org/10.17512/JAMCM.2014.4.13.
- Sahoo, B., Sahoo, B., Sharma, N., Mehar, K., Panda, S.K. (2020), "Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading", Smart Structures and Systems, 26(5), 641-656. https://doi.org/10.12989/sss.2020.26.5.641
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Modell., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
- Shahba, A., Attarnejad, R. and Marvi, M.T. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classic and non-classical boundary conditions", Compos.:Part B, 42(4), 801-808. https://doi.org/10.1016%2Fj.compositesb.2011.01.017. https://doi.org/10.1016%2Fj.compositesb.2011.01.017
- She, G.L., Fuh-Gwo, Y. and Yi-Ru, R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi:10.1016/j.apm.2017.03.014.
- Shen, H.S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206. https://doi.org/10.1016/j.ijmecsci.2014.02.020.
- Shvartsman, B. and Majak, J. (2016), "Numerical method for stability analysis of functionally graded beams on elastic foundation", Appl. Math. Modell., 40(5-6), 3713-3719. https://doi.org/10.1016/j.apm.2015.09.060.
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650.
- Sun, Y., Shi-Rong L. and Romesh, C.B. (2016), "Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation", J. Therm.Stresses, 39(1), 11-26. https://doi.org/10.1080/01495739.2015.1120627.
- Suresh, S. and Mortensen, A. (1998) "Fundamentals of Functionally Graded Materials", IOM Communications Limited, London, United Kingdom.
- Thai, C.H., Ferreira, A.J.M., Abdel Wahab, M. and Nguyen-Xuan, H. (2018), "A moving Krigingmeshfree method with naturally stabilized nodal integration for analysis of functionally graded material sandwich plates", Acta Mechanica, 229, 2997-3023. https://doi.org/10.1007/s00707-018-2156-9.
- Torki, M.E. and Reddy, J.N. (2016), "Buckling of functionally-graded beams with partially delaminated piezoelectric layers," Int. J. Struct. Stab. Dyn., 16(3), 1450104. https://doi.org/10.1142/S0219455414501041.
- Touloukian, Y.S. (1967), "Thermophysical properties of high temperature solids materials", MacMillan, New York.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi:10.1016/0020-7225(91)90165-y.
- Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93(4), 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wattanasakulpong, N., Prusty, B.G. and Kelly, D.W. (2011), "Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams", Int. J. Mech. Sci., 53(9), 734-743. https://doi.org/10.1016/j.ijmecsci.2011.06.005.
- Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93, 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022.
- Yang, J. and Chen, Y, (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60. https://doi:10.1016/j.compstruct.2007.03.006.
- Yaylaci M., Yayli M., UzunYaylaci E., Olmez, H. and Birinci A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Yaylaci, E.U., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022c), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022a), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022e), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi:10.1007/s00419-022-02159-5.
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022g), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
- Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022b), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
- Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022d), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
- Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022f), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501
- Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ozturk, S. And Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
- Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zhang, J., Like C. and Yali L.V. (2019), "Elastoplastic thermal buckling of functionally graded material beams", Compos. Struct., 224, 111014. https://doi.org/10.1016/j.compstruct.2019.111014.
- Zhang, L. and Ko, T.H. (2022), "Bending and buckling of spinning FG nanotubes based on NSGT", Comput. Concrete., 30(4), 243-256. https://doi.org/10.12989/cac.2022.30.4.243.
- Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.
- Zhu, Y., Shi, P., Kang, Y. and Cheng, B. (2019), "Isogeometric analysis of functionally graded plates with a logarithmic higher order shears deformation theory", Thin-Walled Struct., 144, 106234. https://doi.org/10.1016/j.tws.2019.106234.