Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (RS-2023-00208844).
References
- Anastasiadis, A., Senetakis, K. and Pitilakis, K. (2012), "Small-Strain Shear Modulus and Damping Ratio of Sand-Rubber and Gravel-Rubber Mixtures", Geotech. Geol. Eng., 30(2), 363-382. https://doi.org/10.1007/s10706-011-9473-2.
- Arachchige, C.M.K., Indraratna, B., Qi, Y., Vinod, J.S. and Rujikiatkamjorn, C. (2022), "Geotechnical characteristics of a Rubber Intermixed Ballast System", Acta Geotech., 17(5), 1847-1858. https://doi.org/10.1007/s11440-021-01342-2.
- Arefnia, A., Dehghanbanadaki, A., Kassim, K.A. and Ahmad, K. (2020), "Stabilization of backfill using TDA material under a footing close to retaining wall", Geomech. Eng., 22(3), 197-206. https://doi.org/10.12989/gae.2020.22.3.197.
- Atkinson, J.H. (2000), "Non-linear soil stiffness in routine design", Geotechnique, 50(5), 487-508. https://doi.org/10.1680/geot.2000.50.5.487.
- Bo, M.W. and Chu, J. (2006), "Impact of geological conditions on ground improvement projects", IAEG2006 The Geological Society of London.
- Brunet, S., de la Llera, J.C. and Kausel, E. (2016), "Non-linear modeling of seismic isolation systems made of recycled tirerubber", Soil Dyn. Earthq. Eng., 85, 134-145. https://doi.org/10.1016/j.soildyn.2016.03.019.
- Cheng, P., Hu, Y., Yao, K., Fu, Y. and Liu, Y. (2023), "Probabilistic investigations on the elastic stiffness coefficients for suction caisson considering spatially varying soils", Ocean Eng., 289, 116273. https://doi.org/10.1016/j.oceaneng.2023.116273.
- Choo, H., Bate, B. and Burns, S.E. (2015), "Effects of organic matter on stiffness of overconsolidated state and anisotropy of engineered organoclays at small strain", Eng. Geol., 184, 19-28. https://doi.org/10.1016/j.enggeo.2014.10.022.
- Choo, H. and Burns, S. (2014), "Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles", Soil Dyn. Earthq. Eng., 60, 44-50. https://doi.org/10.1016/j.soildyn.2014.01.015.
- Choo, H. and Burns, S. (2015), "Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios", Granular Matter., 17(5), 567-578. https://doi.org/10.1007/s10035-015-0580-2.
- Edil, T.B. and Bosscher, P.J. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17, 453-453. http://doi.org/10.1520/GTJ10306J.
- Edincliler, A., Baykal, G. and Saygili, A. (2010), "Influence of different processing techniques on the mechanical properties of used tires in embankment construction", Waste Management, 30(6), 1073-1080. https://doi.org/10.1016/j.wasman.2009.09.031..
- Ehsani, M., Shariatmadari, N. and Mirhosseini, S.M. (2015), "Shear modulus and damping ratio of sand-granulated rubber mixtures", J. Central South Univ., 22(8), 3159-3167. https://doi.org/10.1007/s11771-015-2853-7.
- Evans, T.M. and Valdes, J.R. (2011), "The microstructure of particulate mixtures in one-dimensional compression: numerical studies", Granular Matter., 13(5), 657-669. https://doi.org/10.1007/s10035-011-0278-z.
- Feng, Z.Y. and Sutter, K.G. (2000), "Dynamic properties of granulated rubber/sand mixtures", Geotech. Test. J., 23(3), 338-344. https://doi.org/10.1520/GTJ11055J.
- Ghazavi, M. and Kavandi, M. (2022), "Shear modulus and damping characteristics of uniform and layered sand-rubber grain mixtures", Soil Dyn. Earthq. Eng., 162, 107412. https://doi.org/10.1016/j.soildyn.2022.107412.
- Grayson, J., Khan, A. and Karanfil, T. (2013), "Permeability of uniform and mixed-size tire chips under different loading conditions", J. Irrig. Drain. Eng. - ASCE, 139(11), 939-946. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000637.
- Han, H., Choo, H. and Park, J. (2023), "Evaluation of the coefficient of lateral stress at rest of granular materials under repetitive loading conditions", J. Rock Mech. Geotech. Eng., 16(5), 1709-1721. https://doi.org/10.1016/j.jrmge.2023.07.024.
- Hataf, N. and Rahimi, M.M. (2006), "Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds", Constr. Build. Mater., 20(10), 910-916. https://doi.org/10.1016/j.conbuildmat.2005.06.019.
- Humphrey, D.N. and Manion, W.P. (1992), "Properties of tire chips for lightweight fill", Grouting, Soil Improvement and Geosynthetics.
- JoviCIC, V. and Coop, M.R. (1997), "Stiffness of coarse-grained soils at small strains", Geotechnique, 47(3), 545-561. https://doi.org/10.1680/geot.1997.47.3.545.
- Kim, H.K. and Santamarina, J.C. (2008), "Sand-rubber mixtures (large rubber chips)", Can. Geotech. J., 45(10), 1457-1466. https://doi.org/10.1139/t08-070.
- Lade, P.V. and Yamamuro, J.A. (1997), "Effects of nonplastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052.
- Lajevardi, S.H. and Enamia, S. (2021), "Small scale behavior of stone columns encased by tires", Geomech. Eng., 25(5), 429-438. https://doi.org/10.12989/gae.2021.25.5.429.
- Lee, C., Truong, Q.H., Lee, W. and Lee, J.S. (2010), "Characteristics of rubber-sand particle mixtures according to size ratio", J. Mater. Civ. Eng., 22(4), 323-331. https://doi:10.1061/(ASCE)MT.1943-5533.0000027.
- Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
- Li, W., Kwok, C.Y., Sandeep, C.S. and Senetakis, K. (2019), "Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales", Powder Technol., 342, 907-916. https://doi.org/10.1016/j.powtec.2018.10.025.
- Li, W., Kwok, C.Y. and Senetakis, K. (2020), "Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand", Can. Geotech. J., 57(5), 763-769. https://doi.org/10.1139/cgj-2019-0112.
- Liu, J. and De Lo, D.P. (2001), "Particle rearrangement during powder compaction", Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 32(12), 3117-3124. https://doi.org/10.1007/s11661-001-0186-7.
- Liu, L., Cai, G. and Liu, S. (2018), "Compression properties and micro-mechanisms of rubber-sand particle mixtures considering grain breakage", Constr. Build. Mater., 187, 1061-1072. https://doi.org/10.1016/j.conbuildmat.2018.08.051.
- Lopera Perez, J.C., Kwok, C.Y. and Senetakis, K. (2016), "Effect of rubber size on the behaviour of sand-rubber mixtures: A numerical investigation", Comput. Geotech., 80, 199-214. https://doi.org/10.1016/j.compgeo.2016.07.005.
- Mark, J.E. (1981), "Rubber elasticity", J. Chem. Educ., 58(11), 898. https://doi.org/10.1021/ed058p898.
- Pistolas, G.A., Anastasiadis, A. and Pitilakis, K. (2017), "Dynamic behaviour of granular soil materials mixed with granulated rubber: Effect of rubber content and granularity on the small-strain shear modulus and damping ratio", Geotech. Geol. Eng., 36, 1267-1281. https://doi.org/10.1007/s10706-017-0391-9.
- Rao, G.V. and Dutta, R.K. (2006), "Compressibility and Strength Behaviour of Sand-tyre Chip Mixtures", Geotech. Geol. Eng., 24(3), 711-724. https://doi.org/10.1007/s10706-004-4006-x.
- Ryu, B., Choo, H., Park, J. and Burns, S.E. (2022), "Stress-Deformation Response of Rigid-Soft Particulate Mixtures under Repetitive Ko Loading Conditions", Transp. Geotech., 37, 100835. https://doi.org/10.1016/j.trgeo.2022.100835.
- Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring, J. Wiley & Sons, New York, NY, USA.
- Sheikh, M.N., Mashiri, M.S., Vinod, J.S. and Tsang, H.H. (2013), "Shear and compressibility behavior of sand-tire crumb mixtures", J. Mater. Civ. Eng., 25(10), 1366-1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.000069.
- Tafreshi, S. and Norouzi, A. (2015), "Application of waste rubber to reduce the settlement of road embankment", Geomech. Eng., 9(2), 219-241. https://doi.org/10.12989/gae.2015.9.2.219.
- Tasalloti, A., Chiaro, G., Murali, A. and Banasiak, L. (2021), "Physical and mechanical properties of granulated rubber mixed with granular soils-a literature review", Sustainability, 13(8), 4309. https://doi.org/10.3390/su13084309.
- Tsang, H.H., Lo, S.H. and Xu, X. (2012), "Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study", Earthq. Eng. Struct. D., 41(14), 2009-2024. https://doi:10.1002/eqe.2171.
- Terzi, N.U., Erenson, C. and Selcuk, M.E. (2015), "Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations", Geomech. Eng., 9(4), 447-464. https://doi.org/10.12989/gae.2015.9.4.447.
- Wang, F., Li, D., Du, W., Zarei, C. and Liu, Y. (2021), "Bender element measurement for small-strain shear modulus of compacted loess", Int. J. Geomech., 21(5), 04021063. http://doi:10.1061/(ASCE)GM.1943-5622.0002004.
- Won, J., Ryu, B. and Choo, H. (2023), "Evolution of maximum shear modulus and compression index of rigid-soft mixtures under repetitive K0 loading conditions", Acta Geotech., https://doi.org/10.1007/s11440-023-01945-x.
- Xiao, Y., Nan, B. and McCartney, J.S. (2019), "Thermal Conductivity of Sand-Tire Shred Mixtures", J. Geotech. Geoenviron., 145(11), 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155.
- Yadav, J.S. and Tiwari, S.K. (2019), "The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review", Environ. Dev. Sustain., 21(2), 485-568. https://doi.org/10.1007/s10668-017-0054-2.