References
- Grieves, Michael, "Completing the Cycle: Using PLM Information in the Sales and Service Functions". SME Management Forum, 2022.
- E. Negri, L. Fumagalli, M. Macchi, "A Review of the Roles of Digital Twin in CPS-based Production Systems", Procedia Manufacturing, vol. 11, pp. 939-948, 2017. https://doi.org/10.1016/j.promfg.2017.07.198
- WIKIPEDIA, 'Digtal twin', https://en.wikipedia.org/wiki/Digital_twin#cite_note-6
- GE Reports Korea, "Gartner Top 10 Technology Trends 2017 'Digital Twin' Story - Key Technologies in IoT and Industrial Digitization", 2017. https://www.gereports.kr/the-rise-of-digital-twins/
- ODEN INSTITUTE, "Karen Willcox's Talk on Digital Twins Elevated to TED.com", 2023. https://oden.utexas.edu/news-and-events/news/karen-willcox-digital-twins-ted-talk/
- DEVELON, "The Concept-X Projects", 2023. https://eu.develon-ce.com/en/innovation-concept-x
- NVIDIA, "NVIDIA ISAAC", 2024. https://developer.nvidia.com/isaac
- Y. Im, S. Lee, M. Cho, D. Shin, S. Hwang, "Real-time simulation of an excavator considering the functional valves of the MCV", vol. 16, no.4, pp. 38~47, 2019.
- J. Kim, J. Lee, J. A. Jung, "The methodology development of real-time simulation model for an excavator," SAE Technical Paper, 2016.
- C. Park, S. Yoo, H. Ahn, J. Kim, D. Shin, "A coupled hydraulic and mechanical system simulation for hydraulic excavators", Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 234, no. 4, pp. 527~549, 2020.
- P. Egli, M. Hutter, "Towards RL-Based Hydraulic Excavator Automation", International Conference on Intelligent Robots and Systems (IROS), pp. 2692-2697. 2020.
- D. Holz, T. Beer, T. Kuhlen, "Soil deformation models for real-time simulation: a hybrid approach", Workshop in Virtual Reality Interactions and Physical Simulation, 2009.
- P. Egli, D. Gaschen, S. Kerscher, D. Jud, M. Hutter, "Soil-Adaptive Excavation Using Reinforcement Learning", EEE Robotics and Automation Letters, vol. 7, no. 4, pp 9778-9785, 2022. https://doi.org/10.1109/LRA.2022.3189834