DOI QR코드

DOI QR Code

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi (Faculty of Engineering, Shahrekord University) ;
  • Hadi Arvin (Faculty of Engineering, Shahrekord University) ;
  • Yaghoub Tadi Beni (Faculty of Engineering, Shahrekord University) ;
  • Krzysztof Kamil Zur (Faculty of Mechanical Engineering, Bialystok University of Technology)
  • 투고 : 2023.08.25
  • 심사 : 2024.05.13
  • 발행 : 2024.05.25

초록

In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.

키워드

과제정보

This research did not receive any specific grant from funding agencies in the public, commercial or not-for profit sectors.

참고문헌

  1. Ansari, R., Hassani, R., Gholami, Y. and Rouhi, H. (2023), "Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout", Struc. Eng. Mech., 85(2), 147-161. https://doi.org/10.12989/sem.2023.85.2.147.
  2. Arvin, H., Arena, A. and Lacarbonara, W. (2020), "Nonlinear vibration analysis of rotating beams undergoing parametric instability: Lagging-axial motion", Mech. Syst. Signal Process., 144, 106892. https://doi.org/10.1016/j.ymssp.2020.106892.
  3. Asadi, N., Arvin, H. and Zur, K.K. (2023), "Campbell diagrams, dynamics and instability zones of graphene-based spinning shafts", Appl. Math. Model., 121, 111-133. https://doi.org/10.1016/j.apm.2023.04.006.
  4. Bakhti, K., Tounsi, A., Kaci, A., Bousahla, A.A., Houari, M.S.A. and Bedia, E.A. (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. https://doi.org/10.12989/scs.2013.14.4.335.
  5. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593. https://doi.org/10.12989/anr.2022.12.6.593.
  6. Bolotin, V.V. (1965), "The dynamic stability of elastic systems", Am. J. Phys., 33(9), 752-753. https://doi.org/10.1119/1.1972245.
  7. Dey, P. and Singha, M.K. (2006), "Dynamic stability analysis of composite skew plates subjected to periodic in-plane load", Thin-Wall. Struct., 44(9), 937-942. https://doi.org/10.1016/j.tws.2006.08.023.
  8. Esmaeili, H.A., Khaki, M. and Abbasi, M. (2018), "Dynamic stability of nanocomposite Mindlin pipes conveying pulsating fluid flow subjected to magnetic field", Struct. Eng. Mech., 67(1), 21-31. https://doi.org/10.12989/sem.2018.67.1.021.
  9. Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3), 147-156. https://doi.org/10.12989/anr.2020.9.3.147.
  10. Geraschenko, V.S., Grishin, A.S. and Gartung, N.I. (2018), "Approaches for the calculation of rayleigh damping coefficients for a time-history analysis", WIT Trans. Built Environ., 180, 227-237 .https://doi.org/10.2495/SUSI180201.
  11. Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
  12. Ghorbanpour Arani, A., Kolahchi, R., Mosayyebi, M. and Jamali, M. (2016), "Pulsating fluid induced dynamic instability of visco-double-walled carbon nano-tubes based on sinusoidal strain gradient theory using DQM and Bolotin method", Int. J. Mech. Mater. Des., 12(1), 17-38. https://doi.org/10.1007/s10999-014-9291-9.
  13. Hajmohammad, M.H., Zarei, M.S., Farrokhian, A. and Kolahchi, R. (2018), "A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment", Adv. Nano Res., 6(4), 299. https://doi.org/10.12989/anr.2018.6.4.299.
  14. Jalaei, M.H., Arani, A.G. and Tourang, H. (2018), "On the dynamic stability of viscoelastic graphene sheets", Int. J. Eng. Sci., 132, 16-29. https://doi.org/10.1016/j.ijengsci.2018.07.002.
  15. Jalaei, M.H. and Civalek, O.M.E.R. (2019), "A nonlocal strain gradient refined plate theory for dynamic instability of embedded graphene sheet including thermal effects", Compos. Struct., 220, 209-220. https://doi.org/10.1016/j.compstruct.2019.03.086.
  16. Jalaei, M.H. and Civalek, Ӧ. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
  17. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419.
  18. Jbur, A.Q., Abdullah, W.N., Faleh, N.M. and Faleh, Z.N. (2023), "Vibration analysis of graphene platelet reinforced stadium architectural roof shells subjected to large deflection", Struct. Eng. Mech., 86(2), 157-165. https://doi.org/10.12989/sem.2023.86.2.157.
  19. Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361. https://doi.org/10.12989/anr.2021.11.4.361.
  20. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct, 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.
  21. Kolahchi, R. and Moniri Bidgoli, A. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.
  22. Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.
  23. Kumar, D. and Srivastava, A. (2016), "Elastic properties of CNT-and graphene-reinforced nanocomposites using RVE", Steel Compos. Struct., 21(5), 1085-1103. https://doi.org/10.12989/scs.2016.21.5.1085.
  24. Liew, K.M., Lee, Y.Y., Ng, T.Y. and Zhao, X. (2007), "Dynamic stability analysis of composite laminated cylindrical panels via the mesh-free kp-Ritz method", Int. J. Mech. Sci., 49(10), 1156-1165. https://doi.org/10.1016/j.ijmecsci.2007.02.005.
  25. Loja, M.A.R., Barbosa, J.I. and Soares, C.M. (2017), "Dynamic instability of variable stiffness composite plates", Compos. Struct., 182, 402-411. https://doi.org/10.1016/j.compstruct.2017.09.046.
  26. Mashhour, M., Barati, M.R. and Shahverdi, H. (2023), "Flutter behavior of graded graphene platelet reinforced cylindrical shells with porosities under supersonic airflow", Steel Compos. Struct., 46(5), 611-619. https://doi.org/10.12989/scs.2023.46.5.611.
  27. Mirtalaie, S.H. and Hajabasi, M.A. (2016), "A new methodology for modeling and free vibrations analysis of rotating shaft based on the Timoshenko beam theory", J. Vib. Acoust., 138(2), 021012. https://doi.org/10.1115/1.4032327.
  28. Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct. 22(2), 277-299. https://doi.org/10.12989/scs.2016.22.2.277.
  29. Nejadi, M.M., Mohammadimehr, M. and Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539. https://doi.org/10.12989/anr.2021.10.6.539.
  30. Newmark, N.M. (1959), "A method of computation for structural dynamics", J. Eng. Mech. Div., 85(3), 67-94. https://doi.org/10.1061/JMCEA3.0000098.
  31. Ng, T.Y., Lam, K.Y., Liew, K.M. and Reddy, J. (2001), "Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading", Int. J. Solids Struct., 38(8), 1295-1309. https://doi.org/10.1016/S0020-7683(00)00090-1.
  32. Pei, Y.C. (2009), "Stability boundaries of a spinning rotor with parametrically excited gyroscopic system", Eur. J. Mech. A/Solids, 28(4), 891-896. https://doi.org/10.1016/j.euromechsol.2008.12.007.
  33. Qiu, F., Hao, Y., Li, X., Wang, B. and Wang, M. (2015), "Functionalized graphene sheets filled isotactic polypropylene nanocomposites", Compos. B: Eng., 71, 175-183. https://doi.org/10.1016/j.compositesb.2014.11.027.
  34. Ramachandra, L.S. and Panda, S.K. (2012), "Dynamic instability of composite plates subjected to non-uniform in-plane loads", J. Sound Vib., 331(1), 53-65. https://doi.org/10.1016/j.jsv.2011.08.010.
  35. Sadeghi Ferezghi, Y., Sohrabi, M. and Nezhad, S.M.M. (2020), "Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell", Struct. Eng. Mech., 74(5), 679-698. https://doi.org/10.12989/sem.2020.74.5.679.
  36. Sahu, S. K. and Datta, P. K. (2002), "Dynamic stability of curved panels with cutouts", J. Sound Vib., 251(4), 683-696. https://doi.org/10.1006/jsvi.2001.3961.
  37. Sobhy, M. and Zenkour, A. M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct., 33(2), 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
  38. Sourani, P., Hashemian, M., Pirmoradian, M. and Toghraie, D. (2020), "A comparison of the Bolotin and incremental harmonic balance methods in the dynamic stability analysis of an Euler-Bernoulli nanobeam based on the nonlocal strain gradient theory and surface effects", Mech. Mater., 145, 103403. https://doi.org/10.1016/j.mechmat.2020.103403.
  39. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969.
  40. Villar-Rodil, S., Paredes, J.I., Martinez-Alonso, A. and Tascon, J. M. (2009), "Preparation of graphene dispersions and graphene-polymer composites in organic media", J. Mater. Chem., 19(22), 3591-3593. https://doi.org/10.1039/B904935E.
  41. Vossough, H., Ahmadi, F. and Golabi, S. (2023), "Dynamic instability region analysis of reinforced-CNTs truncated conical shells using mixed DQ-Bolotin method", Struct. Eng. Mech., 87(2), 129-136. https://doi.org/10.12989/sem.2023.87.2.129.
  42. Wang, B., Yan, G. and Allahyari, S. (2021), "Optimization and mathematical modelling of multi-layer beam based on sinusoidal theory", Struct. Eng. Mech., 79(1), 109-116. https://doi.org/10.12989/sem.2021.79.1.109.
  43. Wu, C.P. and Chiu, S.J. (2002), "Thermally induced dynamic instability of laminated composite conical shells", Int. J. Solids Struct., 39(11), 3001-3021. https://doi.org/10.1016/S0020-7683(02)00234-2.
  44. Wu, H., Yang, J. and Kitipornchai, S. (2017), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001.
  45. Yang, N., Moradi, Z., Khadimallah, M.A. and Arvin, H. (2022), "Application of the Chebyshev-Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment", Eng. Anal. Bound. Elem., 139, 169-179. https://doi.org/10.1016/j.enganabound.2022.03.013.
  46. Zhao, S., Yang, Z., Kitipornchai, S. and Yang, J. (2020), "Dynamic instability of functionally graded porous arches reinforced by graphene platelets", Thin-Walled Struct., 147, 106491. https://doi.org/10.1016/j.tws.2019.106491
  47. Zhou, C., Zhan, Z., Zhang, J., Fang, Y. and Tahouneh, V. (2020), "Vibration analysis of FG porous rectangular plates reinforced by graphene platelets", Steel Compos. Struct., 34(2), 215-226. https://doi.org/10.12989/scs.2020.34.2.215.
  48. Zhou, L. and Najjari, Y. (2022), "Analytical solution of buckling problem in plates reinforced by Graphene platelet based on third order shear deformation theory", Steel Compos. Struct., 43(6), 725-734. https://doi.org/10.12989/scs.2022.43.6.725.