References
- Abaqus (2017), Abaqus/CAE User's Manual: Version 6.26. Providence, RI: Abaqus.
- Abeysiriwardena, T. and Mahendran, M. (2022a), "DSM design of LSF walls subject to distortional buckling", Eng. Struct., 272, 115016. https://doi.org/10.1016/j.engstruct.2022.115016.
- Abeysiriwardena, T. and Mahendran, M. (2022b). "Experimental and numerical investigations of LSF walls subject to distortional buckling", Thin-Wall. Struct., 171, 108685. https://doi.org/10.1016/j.tws.2021.108685.
- Adany, S. and Schafer, B.W. (2006). "Buckling mode decomposition of single-branched open cross-section members via finite strip method: Derivation", Thin-Walled Struct., 44, 563-584. https://doi.org/10.1016/j.tws.2006.03.013.
- Arlot, S. and Celisse, A. (2010). "A survey of cross-validation procedures for model selection", Statistics Surveys, 4, 40-79, https://doi.org/10.1214/09-SS054.
- Becque, J., Li, X. and Davison, B. (2019). "Modal decomposition of coupled instabilities: The method of the equivalent nodal forces", Thin-Wall. Struct., 143, 106229. https://doi.org/10.1016/j.tws.2019.106229.
- BS5950 (1987), British Standards Institution, Structural Use of Steelwork in Building, Part 5: Code of Practice for Design of Cold-Formed Sections. BSI, London, UK.
- CEN (2005), Eurocode 3: Design of Steel Structures, Part 1.3: General Rules-Supplementary Rules for Cold Formed Members and Sheeting, in, Brussels: European Comittee for Standardization.
- Cheung, Y.K. and Tham, L.G. (1998), "Finite Strip Method". CRC Press, Boca Raton, USA.
- D'aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2014). "Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams", Thin-Wall. Struct., 77, 141-152. https://doi.org/10.1016/j.tws.2013.09.015.
- Dai, Y., Roy, K., Fang, Z., Chen, B., Raftery, G.M. and Lim, J.B.P. (2022). "A novel machine learning model to predict the moment capacity of cold-formed steel channel beams with edge-stiffened and un-stiffened web holes", J. of Build. Eng., 53, 104592. https://doi.org/10.1016/j.jobe.2022.104592.
- Dar, M.A., Subramanian, N., Anbarasu, M., Dar, A.R. and Lim J.B.P. (2018), "Structural performance of cold-formed steel composite beams", Steel Comp. Struct., 27, 545-554. https://doi.org/10.12989/scs.2018.27.5.545.
- Degtyarev, V.V. (2021). "Neural networks for predicting shear strength of CFS channels with slotted webs", J. Const. Steel Res., 177, 106443. https://doi.org/10.1016/j.jcsr.2020.106443.
- Degtyarev, V.V. and Naser, M.Z. (2021). "Boosting machines for predicting shear strength of CFS channels with staggered web perforations", Struct., 34, 3391-3403. https://doi.org/10.1016/j.istruc.2021.09.060.
- El-kassas, E.M.A., Mackie, R.I. and El-sheikh, A.I. (2001). "Using neural networks in cold-formed steel design", Comput. Struct., 79, 1687-1696. https://doi.org/10.1016/S0045-7949(01)00099-2.
- El-kassas, E.M.A., Mackie, R.I. and El-sheikh, A.I. (2002). "Using neural networks to predict the design load of cold-formed steel compression members", Adv. in Eng. Soft., 33, 713-719. https://doi.org/10.1016/S0965-9978(02)00051-0.
- Fang, Z., Roy, K., Chen, B., Sham, C.-W., Hajirasouliha, I. and Lim, J.B.P. (2021a). "Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression", Thin-Wall. Struct., 166, 108076. https://doi.org/10.1016/j.tws.2021.108076.
- Fang, Z., Roy, K., Ma, Q., Uzzaman, A. and Lim, J.B.P. (2021b). "Application of deep learning method in web crippling strength prediction of cold-formed stainless steel channel sections under end-two-flange loading", Struct., 33, 2903-2942. https://doi.org/10.1016/j.istruc.2021.05.097.
- Fang, Z., Roy, K., Mares, J., Sham, C.-W., Chen, B. and Lim, J.B.P. (2021c). "Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network", Struct., 33, 2792-2802. https://doi.org/10.1016/j.istruc.2021.05.096.
- Guzelbey, I.H., Cevik, A. and Erklig, A. (2006). "Prediction of web crippling strength of cold-formed steel sheetings using neural networks", J. Const. Steel Res., 62, 962-973. https://doi.org/10.1016/j.jcsr.2006.01.008.
- Hasanali, M., Roy, K., Mojtabaei, S.M., Hajirasouliha, I., Clifton, G.C. and Lim, J.B.P. (2022). "A critical review of cold-formed steel seismic resistant systems: Recent developments, challenges and future directions", Thin-Wall. Struct., 180, 109953. https://doi.org/10.1016/j.tws.2022.109953.
- Kesti, J. (2000), "Local and distortional buckling of perforated steel wall studs", Ph.D. Dissertation, Helsinki University of Technology, Espoo, Finland.
- Mathworks (2021), Matlab R2021b. Mathworks Inc.
- Mojtabaei, S.M., Becque, J. and Hajirasouliha, I. (2020). "Local Buckling in Cold-Formed Steel Moment-Resisting Bolted Connections: Behavior, Capacity, and Design", J. Struct. Eng., 146, 04020167. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002730.
- Mojtabaei, S.M., Becque, J. and Hajirasouliha, I. (2021). "Structural Size Optimization of Single and Built-Up Cold-Formed Steel Beam-Column Members", J. Struct. Eng., 147, 04021030. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002987.
- Mojtabaei, S.M., Becque, J., Hajirasouliha, I. and Khandan, R. (2023). "Predicting the buckling behaviour of thin-walled structural elements using machine learning methods", Thin-Walled Struct., 184, 110518. https://doi.org/10.1016/j.tws.2022.110518.
- Pala, M. (2006). "A new formulation for distortional buckling stress in cold-formed steel members". J. Const. Steel Res., 62, 716-722. https://doi.org/10.1016/j.jcsr.2005.09.011.
- Pan, C.-L. and Peng, J.-L. (2005). "Performance of cold-formed steel wall frames under compression", Steel Comp. Struct., 5, 407-420. https://doi.org/10.12989/scs.2005.5.5.407.
- Parastesh, H., Mojtabaei, S.M., Taji, H., Hajirasouliha, I. and Bagheri Sabbagh, A. (2021). "Constrained optimization of antisymmetric cold-formed steel beam-column sections", Eng. Struct., 228, 111452. https://doi.org/10.1016/j.engstruct.2020.111452.
- Phan, D.T., Mojtabaei, S.M., Hajirasouliha, I., Ye, J. and Lim, J.B.P. (2019). "Coupled element and structural level optimisation framework for cold-formed steel frames", J. Const. Steel Res., 105867. https://doi.org/10.1016/j.jcsr.2019.105867.
- Schafer, B.W. and Adany, S. (2006). "Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods", Eighteenth International Specialty Conference on Cold-Formed Steel Structures, Orland, USA.
- Schmidhuber, J. (2015), "Deep learning in neural networks: An overview", Neural Networks, 61, 85-117, arXiv:1404.7828. https://doi.org/10.48550/arXiv.1404.7828.
- Shifferaw, Y. and Schafer, B.W. (2012), "Inelastic bending capacity of cold-formed steel members", J. Struct. Eng., 138, 468-480. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000469.
- Tohidi, S. and Sharifi, Y. (2015). "Neural networks for inelastic distortional buckling capacity assessment of steel I-beams", Thin-Wall. Struct., 94, 359-371. https://doi.org/10.1016/j.tws.2015.04.023.
- Xiao, L., Li, Q.-Y., Li, H. and Ren, Q. (2022), "Loading capacity prediction and optimization of cold-formed steel built-up section columns based on machine learning methods", ThinWall. Struct., 180, 109826. https://doi.org/10.1016/j.tws.2022.109826.
- Xu, Y., Zheng, B. and Zhang, M. (2021), "Capacity prediction of cold-formed stainless steel tubular columns using machine learning methods", J. Const. Steel Res., 182, 106682. https://doi.org/10.1016/j.jcsr.2021.106682.
- Yilmaz, F., Mojtabaei, S.M., Hajirasouliha, I. and Becque, J. (2023), "Behaviour and performance of OSB-sheathed cold-formed steel stud wall panels under combined vertical and seismic loading", Thin-Wall. Struct., 183, 110419. https://doi.org/10.1016/j.tws.2022.110419.
- Young, B. (2005), "Local buckling and shift of effective centroid of cold-formed steel columns", Steel Comp. Struct., 5, 235-246. https://doi.org/10.12989/scs.2005.5.2_3.235.
- Yousefi, A.M., Lim, J.B.P. and Clifton, C.G. (2019). "Web crippling strength of perforated cold-formed ferritic stainless steel unlipped channels with restrained flanges under one-flange loadings", Thin-Wall. Struct., 137, 94-105. https://doi.org/10.1016/j.tws.2019.01.002.
- Yuan, W.-B., Cheng, S., Li, L.-Y. and Kim, B. (2014). "Web-flange distortional buckling of partially restrained cold-formed steel purlins under uplift loading", Int. J. Mech. Sciences, 89, 476-481. https://doi.org/10.1016/j.ijmecsci.2014.10.011.
- Zarringol, M, Thai, H.-T. and Naser, M.Z. (2021). "Application of machine learning models for designing CFCFST columns", J. Const. Steel Res., 185, 106856. https://doi.org/10.1016/j.jcsr.2021.106856.
- Zhao, X., Wang, G., Sun, X., Wang, X. and Schafer, B.W. (2023), "Modeling of uncertain geometry of cold formed steel members based on laser measurements and machine learning", Eng. Struct., 279, 115578. https://doi.org/10.1016/j.engstruct.2022.115578.
- Zhou, W. and Jiang, L. (2017), "Distortional buckling of cold-formed lipped channel columns subjected to axial compression", Steel Comp. Struct., 23, 331-338. https://doi.org/10.12989/scs.2017.23.3.331.