DOI QR코드

DOI QR Code

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • 투고 : 2023.09.17
  • 심사 : 2024.02.28
  • 발행 : 2024.05.25

초록

Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

키워드

참고문헌

  1. ASTM D (2013), 4945-13: Standard test method for high strain testing of piles, American Society for Testing and Materials.
  2. Beasley, J.E. and Chu, P.C. (1996) "A genetic algorithm for the set covering problem", Europ. J. Operational Res., 94(2), 392-404. https://doi.org/10.1016/0377-2217(95)00159-X.
  3. Benali, A. and Nechnech, A. (2011), "Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks", Int. Seminar, Innova. Valorisat. Civil Eng., Construct. Mater., 50(239).
  4. Bui, D.T., Moayedi, H., Abdullahi, M.M., Rashid, A.S.A. and Nguyen, H. (2019), "Prediction of pullout behavior of belled piles through various machine learning modelling techniques", Sensors, 19(17), 25. https://doi.org/10.3390/s19173678.
  5. Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
  6. Cheng, M.Y., Prayogo, D. and Tran, D.H. (2016), "Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search", J. Comput. Civil Eng., 30(3), 04015036. https://doi.org/10.1061/(ASCE)CP.1943-5487.000051.
  7. Chu, W., Gao, X. and Sorooshian, S. (2011), "A new evolutionary search strategy for global optimization of high-dimensional problems", Information Sci., 181(22), 4909-4927. https://doi.org/10.1016/j.ins.2011.06.024.
  8. Crowther, G.S. (1990), "Analysis of laterally loaded piles embedded in layered frozen soil", J. Geotech. Eng., 116(7), 1137-1152. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1137.
  9. Dai, W. (2021), "Safety evaluation of traffic system with historical data based on Markov process and deep-reinforcement learning", J. Comput. Meth. Eng. Appl., 1-14.
  10. Dai, W. (2022), "Evaluation and improvement of carrying capacity of a traffic system", Innov. Appl. Eng. Technol., 1-9. https://doi.org/10.58195/iaet.v1i1.001.
  11. Dai, W. (2023), "Design of traffic improvement plan for line 1 Baijiahu station of Nanjing metro", Innov. Appl. Eng. Technol., https://doi.org/10.58195/iaet.v2i1.133.
  12. Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983. https://doi.org/10.3390/ma12060983.
  13. Degertekin, S.O. (2012), "Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505.
  14. Deng, E.F., Wang, Y.H., Zong, L., Zhang, Z. and Zhang, J.F. (2024), "Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies", Thin-Wall. Struct., 197, 111563. https://doi.org/10.1016/j.tws.2024.111563.
  15. Dreyfus, G. (2005), Neural Networks: Methodology and Applications. Springer Science & Business Media.
  16. Duan, Q., Gupta, V.K. and Sorooshian, S. (1993), "Shuffled complex evolution approach for effective and efficient global minimization", J. Optimiz. Theory Appl., 76, 501-521. https://doi.org/10.1007/BF00939380.
  17. Fei, W., Yang, Z.J. and Sun, T. (2019), "Ground freezing impact on laterally loaded pile foundations considering strain rate effect", Cold Regions Sci. Technol., 157, 53-63. https://doi.org/10.1016/j.coldregions.2018.09.006.
  18. Ge, X., Yang, Z., Still, B. and Li, Q. (2012), "Cold regions engineering 2012: Sustainable infrastructure development in a changing cold environment", 478-488.
  19. Goh, A.T. (1995), "Back-propagation neural networks for modeling complex systems", Artificial Intell. Eng., 9(3), 143-151. https://doi.org/10.1016/0954-1810(94)00011-S.
  20. Goh, A.T. (1996), "Pile driving records reanalyzed using neural networks", J. Geotech. Eng., 122(6), 492-495. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(492).
  21. Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., 17(3), 215-236. https://doi.org/10.12989/scs.2014.17.3.215.
  22. Han, L.H., Yao, G.H. and Zhao, X.L. (2004), "Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns", Steel Compos. Struct., 4(3), 169-188. https://doi.org/10.12989/scs.2004.4.3.169.
  23. Han, Y. and Vaziri, H. (1992), "Dynamic response of pile groups under lateral loading", Soil Dyn. Earthq. Eng., 11(2), 87-99. https://doi.org/10.1016/0267-7261(92)90047-H.
  24. Hatamlou, A. (2013), "Black hole: A new heuristic optimization approach for data clustering", Inform. Sci., 222, 175-184. https://doi.org/10.1016/j.ins.2012.08.023.
  25. He, H., Wang, S., Shen, W. and Zhang, W. (2023), "The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures", Transport. Geotech., 42, 101061. https://doi.org/10.1016/j.trgeo.2023.101061.
  26. Hou, X., Chen, J., Jin, H., Rui, P., Zhao, J. and Mei, Q. (2020), "Thermal characteristics of cast-in-place pile foundations in warm permafrost at Beiluhe on interior Qinghai-Tibet Plateau: Field observations and numerical simulations", Soils Found., 60(1), 90-102. https://doi.org/10.1016/j.sandf.2020.01.008.
  27. Huang, H., Huang, M., Zhang, W., Guo, M. and Liu, B. (2022), "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column", Struct. Infrastruct. Eng., 18(2), 249-265. https://doi.org/10.1080/15732479.2020.1841245.
  28. Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.103123.
  29. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  30. Kiefa, M.A. (1998), "General regression neural networks for driven piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 124(12), 1177-1185. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(117.
  31. Kumar, M. and Samui, P. (2019), "Reliability analysis of pile foundation using ELM and MARS", Geotech. Geolo. Eng., 37, 3447-3457. https://doi.org/10.1007/s10706-018-00777-x.
  32. Lemonis, M.E. and Daramara, A.G., Georgiadou, A.G., Siorikis, V.G., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 42(4), 459-475. https://doi.org/10.12989/scs.2022.42.4.459.
  33. Li, N., Asteris, P.G., Tran, T.T., Pradhan, B. and Nguyen, H. (2022), "Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization", Steel Compos. Struct., 42(6), 733-745. https://doi.org/10.12989/scs.2022.42.6.733.
  34. Likins, G. and Rausche, F. (2004), "Correlation of CAPWAP with static load tests", Proceedings of the Seventh International Conference on the Application of Stresswave Theory to piles 153-165.
  35. Liu, J., Wang, T. and Wen, Z. (2018), "Research on pile performance and state-of-the-art practice in cold regions", Sci. Cold Arid Regions, 10(1), 1-11. https://doi.org/10.3724/SP.J.1226.2018.00001.
  36. Long, X., Mao, M.H., Su, T.X, Su, Y.T. and Tian, M.K. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Defence Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003.
  37. Lu, D., Ma, C., Du, X., Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2), 04016058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.
  38. Lu, D., Zhou, X., Du, X. and Wang, G. (2019), "A 3D fractional elastoplastic constitutive model for concrete material", Int. J. Solids Struct., 165, 160-175. https://doi.org/10.1016/j.ijsolstr.2019.02.004.
  39. Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates". Steel and Composite Structures 30 (3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271
  40. Ly, H.B., Monteiro, E., Le, T.T., Le, V.M., Dal, M., Regnier, G. and Pham, B.T. (2019), "Prediction and sensitivity analysis of bubble dissolution time in 3D selective laser sintering using ensemble decision trees", Materials, 12(9), 1544. https://doi.org/10.3390/ma12091544.
  41. Ma, X., Dong, Z., Quan, W., Dong, Y. and Tan, Y. (2023), "Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm", Mech. Syst. Signal Processing, 187, 109930. https://doi.org/10.1016/j.ymssp.2022.109930.
  42. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  43. Melnikov, V., Skvortsov, A., Malkova, G., Drozdov, D., Ponomareva, O., Sadurtdinov, M., Tsarev, A. and Dubrovin, V. (2010), "Seismic studies of frozen ground in Arctic areas", Russian Geology Geophys., 51(1), 136-142. https://doi.org/10.1016/j.rgg.2009.12.011.
  44. Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations", J. Geotech. Eng. Div., 102(3), 197-228. https://doi.org/10.1061/AJGEB6.0000243.
  45. Mirjalili, S., Hashim, S., Taherzadeh, G., Mirjalili, S. and Salehi, S. (2011), "A study of different transfer functions for binary version of particle swarm optimization", Int. Conference Genetic Evolutionary Methods, 2-7.
  46. Moayedi, H. and Armaghani, D.J. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7.
  47. Moayedi, H. and Hayati, S. (2018), "Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile", Int. J. Geomech., 18(6), 11. https://doi.org/10.1061/(asce)gm.1943-5622.0001125.
  48. Moayedi, H. and Hayati, S. (2019), "Artificial intelligence design charts for predicting friction capacity of driven pile in clay", Neural Comput. Appl., 31(11), 7429-7445. https://doi.org/10.1007/s00521-018-3555-5.
  49. Moayedi, H. and Rezaei, A. (2019), "An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand", Neural Comput. Appl., 31(2), 327-336. https://doi.org/10.1007/s00521-017-2990-z.
  50. Moayedi, H., Eghtesad, A., Khajehzadeh, M., Keawsawasvong, S., Al-Amidi, M. and Van, B. (2022), "Optimized ANNs for predicting compressive strength of high-performance concrete", Steel Compos. Struct., 44, 867-882. https://doi.org/10.12989/scs.2022.44.6.867.
  51. Moayedi, H., Mu'azu, M.A. and Foong, L.K. (2019), "Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles", Eng. Comput., 17. https://doi.org/10.1007/s00366-019-00885-z.
  52. Mosallanezhad, M. and Moayedi, H. (2017), "Developing hybrid artificial neural network model for predicting uplift resistance of screw piles", Arab. J. Geosci., 10(22), 10. https://doi.org/10.1007/s12517-017-3285-5.
  53. Nazir, R. and Momeni, E. (2013), "Prediction of axial bearing capacity of spread foundations in cohesionless soils using artificial neural network", Proc. GEOCON 747-757.
  54. Neukirchner, R. (1987), "Analysis of laterally loaded piles in permafrost", J. Geotech. Eng., 113(1), 15-29. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:1(15). 
  55. Nixon, J. (1984), "Laterally loaded piles in permafrost", Canadian Geotech. J., 21(3), 431-438. https://doi.org/10.1139/t84-047.
  56. Pal, M. and Deswal, S. (2008), "Modeling pile capacity using support vector machines and generalized regression neural network", J. Geotech. Geoenviron. Eng., 134(7), 1021-1024. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(1021).
  57. Phukan, A. (1991), Foundation Engineering Handbook. Springer, pp. 735-749.
  58. Ren, C., Yu, J., Liu, X., Zhang, Z. and Cai, Y. (2022), "Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking", Int. J. Mining Sci. Technol., 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010.
  59. Roy, S.D., Pandey, A. and Saha, R. (2021), "Shake table study on seismic soil-pile foundation-structure interaction in soft clay", Structures, 1229-1241.
  60. Ruffini, R. and Wheeler, J.A. (1971), "Introducing the black hole", Physics Today, 24(1), 30-41. https://doi.org/10.1063/1.3022513.
  61. Samui, P. (2008), "Prediction of friction capacity of driven piles in clay using the support vector machine", Canadian Geotech. J., 45(2), 288-295. https://doi.org/10.1139/T07-072.
  62. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Structures, 105289.
  63. Shelman, A., Levings, J. and Sritharan, S. (2010), "Seismic design of deep bridge pier foundations in seasonally frozen ground".
  64. Shelman, A., Tantalla, J., Sritharan, S., Nikolaou, S. and Lacy, H. (2014), "Characterization of seasonally frozen soils for seismic design of foundations", J. Geotech. Geoenviron. Eng., 140(7), 04014031.
  65. Simpson, P. (1990), "Artificial neural system-foundation, paradigm, application and implementation Pergamon Press New York".
  66. Singer, S. and Nelder, J. (2009), "Nelder-mead algorithm", Scholarpedia, 4(7), 2928. https://doi.org/10.4249/scholarpedia.2928.
  67. Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y., Liu, Z., Chen, J. and Wang, X. (2023), "Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials", Construct. Build. Mater., 408, 133689. https://doi.org/10.1016/j.conbuildmat.2023.133689.
  68. Sritharan, S., Suleiman, M.T. and White, D.J. (2007), "Effects of seasonal freezing on bridge column-foundation-soil interaction and their implications", Earthq. Spectra, 23(1), 199-222. https://doi.org/10.1193/1.242307.
  69. Suleiman, M.T., Sritharan, S. and White, D.J. (2006), "Cyclic lateral load response of bridge column-foundation-soil systems in freezing conditions", J. Struct. Eng., 132(11), 1745-1754. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1745).
  70. Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Canadian Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj2015-0623.
  71. The, C., Wong, K., Goh, A. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
  72. Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003), "A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters", Water Resources Res., 39(8), https://doi.org/10.1029/2002WR001642.
  73. Wang, H., Zhang, X. and Jiang, S. (2022), "A laboratory and field universal estimation method for tire-pavement interaction noise (TPIN) based on 3D image technology", Sustainability, 14(19), 12066. https://doi.org/10.3390/su141912066.
  74. Wang, T., Zhou, G., Wang, J., Zhou, Y. and Chen, T. (2019), "Stochastic coupling analysis of uncertain hydro-thermal properties for embankment in cold regions", Transport. Geotech., 21, 100275. https://doi.org/10.1016/j.trgeo.2019.100275.
  75. Wang, X., Li, L., Xiang, Y., Wu, Y. and Wei, M. (2024), "The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression", Front. Mater., 10-2023 https://doi.org/10.3389/fmats.2023.1332269.
  76. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H., Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  77. Wu, Z., Zhang, D., Zhao, T., Ma, J. and Zhao, D. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor", Transport. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269.
  78. Yang, Z.J., Li, Q., Xu, G. and Hulsey, J.L. (2010), Soil Dynamics and Earthquake Engineering, 162-168.
  79. Yang, Z.J., Still, B. and Ge, X. (2015), "Mechanical properties of seasonally frozen and permafrost soils at high strain rate", Cold Regions Sci. Technol., 113, 12-19. https://doi.org/10.1016/j.coldregions.2015.02.008.
  80. Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y. and Tang, X. (2021), "Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures", Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777.
  81. Zatar, W., Xiao, F., Chen, G.S. and Hulsey, J.L. (2021), "Identification of viscoelastic property of pile-soil interactions with fractional derivative model", J. Low Frequency Noise, Vib. Active Control, 40(3), 1392-1400. https://doi.org/10.1177/1461348420979478.
  82. Zhang, G., Feng, W., Wu, M., Shao, H. and Ma, F. (2021a), "Reservoir bank slope stability prediction model based on BP neural network", Steel Compos. Struct., 41(2), 237-247. https://doi.org/10.12989/scs.2021.41.2.237.
  83. Zhang, H., Zhou, J., Jahed Armaghani, D., Tahir, M., Pham, B.T. and Huynh, V.V. (2020), "A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration", Appl. Sci., 10(3), 869. https://doi.org/10.3390/app10030869.
  84. Zhang, J. and Zhang, C. (2023a), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
  85. Zhang, W., Wu, C., Li, Y., Wang, L. and Samui, P. (2021b), "Assessment of pile drivability using random forest regression and multivariate adaptive regression splines", Georisk: Assessment Manage. Risk Eng. Syst. Geohazards, 15(1), 27-40. https://doi.org/10.1080/17499518.2019.1674340.
  86. Zhang, X., Yang, Z.J., Chen, X., Guan, J., Pei, W. and Luo, T. (2021c), "Experimental study of frozen soil effect on seismic behavior of bridge pile foundations in cold regions", Structures, 1752-1762.
  87. Zhang, Y. and Zhang, H. (2023b), "Enhancing robot path planning through a twin-reinforced chimp optimization algorithm and evolutionary programming algorithm", IEEE Access https://doi.org/10.1109/ACCESS.2023.3337602.
  88. Zhang, Y., Abdullah, S., Ullah, I. and Ghani, F. (2024), "A new approach to neural network via double hierarchy linguistic information: Application in robot selection", Eng. Appl. Artificial Intell., 129, 107581. https://doi.org/10.1016/j.engappai.2023.107581. 
  89. Zhang, Y., Gono, R. and Jasinski, M. (2023), "An improvement in dynamic behavior of single phase PM brushless DC motor using deep neural network and mixture of experts", IEEE Access https://doi.org/10.1109/ACCESS.2023.3289409.
  90. Zhao, Y., Dai, W., Wang, Z. and Ragab, A.E. (2023), "Application of computer simulation to model transient vibration responses of GPLs reinforced doubly curved concrete panel under instantaneous heating", Mater. Today Commun., 107949. https://doi.org/10.1016/j.mtcomm.2023.107949.
  91. Zhou, X., Lu, D., Zhang, Y., Du, X. and Rabczuk, T. (2022), "An open-source unconstrained stress updating algorithm for the modified Cam-clay model", Comput. Meth. Appl. Mech. Eng., 390, 114356. https://doi.org/10.1016/j.cma.2021.114356.