References
- ASTM D (2013), 4945-13: Standard test method for high strain testing of piles, American Society for Testing and Materials.
- Beasley, J.E. and Chu, P.C. (1996) "A genetic algorithm for the set covering problem", Europ. J. Operational Res., 94(2), 392-404. https://doi.org/10.1016/0377-2217(95)00159-X.
- Benali, A. and Nechnech, A. (2011), "Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks", Int. Seminar, Innova. Valorisat. Civil Eng., Construct. Mater., 50(239).
- Bui, D.T., Moayedi, H., Abdullahi, M.M., Rashid, A.S.A. and Nguyen, H. (2019), "Prediction of pullout behavior of belled piles through various machine learning modelling techniques", Sensors, 19(17), 25. https://doi.org/10.3390/s19173678.
- Cao, J., Du, J., Fan, Q., Yang, J., Bao, C. and Liu, Y. (2024), "Reinforcement for earthquake-damaged glued-laminated timber knee-braced frames with self-tapping screws and CFRP fabric", Eng. Struct., 306, 117787. https://doi.org/10.1016/j.engstruct.2024.117787.
- Cheng, M.Y., Prayogo, D. and Tran, D.H. (2016), "Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search", J. Comput. Civil Eng., 30(3), 04015036. https://doi.org/10.1061/(ASCE)CP.1943-5487.000051.
- Chu, W., Gao, X. and Sorooshian, S. (2011), "A new evolutionary search strategy for global optimization of high-dimensional problems", Information Sci., 181(22), 4909-4927. https://doi.org/10.1016/j.ins.2011.06.024.
- Crowther, G.S. (1990), "Analysis of laterally loaded piles embedded in layered frozen soil", J. Geotech. Eng., 116(7), 1137-1152. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:7(1137.
- Dai, W. (2021), "Safety evaluation of traffic system with historical data based on Markov process and deep-reinforcement learning", J. Comput. Meth. Eng. Appl., 1-14.
- Dai, W. (2022), "Evaluation and improvement of carrying capacity of a traffic system", Innov. Appl. Eng. Technol., 1-9. https://doi.org/10.58195/iaet.v1i1.001.
- Dai, W. (2023), "Design of traffic improvement plan for line 1 Baijiahu station of Nanjing metro", Innov. Appl. Eng. Technol., https://doi.org/10.58195/iaet.v2i1.133.
- Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019), "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983. https://doi.org/10.3390/ma12060983.
- Degertekin, S.O. (2012), "Optimum design of geometrically non-linear steel frames using artificial bee colony algorithm", Steel Compos. Struct., 12(6), 505-522. https://doi.org/10.12989/scs.2012.12.6.505.
- Deng, E.F., Wang, Y.H., Zong, L., Zhang, Z. and Zhang, J.F. (2024), "Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies", Thin-Wall. Struct., 197, 111563. https://doi.org/10.1016/j.tws.2024.111563.
- Dreyfus, G. (2005), Neural Networks: Methodology and Applications. Springer Science & Business Media.
- Duan, Q., Gupta, V.K. and Sorooshian, S. (1993), "Shuffled complex evolution approach for effective and efficient global minimization", J. Optimiz. Theory Appl., 76, 501-521. https://doi.org/10.1007/BF00939380.
- Fei, W., Yang, Z.J. and Sun, T. (2019), "Ground freezing impact on laterally loaded pile foundations considering strain rate effect", Cold Regions Sci. Technol., 157, 53-63. https://doi.org/10.1016/j.coldregions.2018.09.006.
- Ge, X., Yang, Z., Still, B. and Li, Q. (2012), "Cold regions engineering 2012: Sustainable infrastructure development in a changing cold environment", 478-488.
- Goh, A.T. (1995), "Back-propagation neural networks for modeling complex systems", Artificial Intell. Eng., 9(3), 143-151. https://doi.org/10.1016/0954-1810(94)00011-S.
- Goh, A.T. (1996), "Pile driving records reanalyzed using neural networks", J. Geotech. Eng., 122(6), 492-495. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(492).
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2014), "Prediction of the flexural overstrength factor for steel beams using artificial neural network", Steel Compos. Struct., 17(3), 215-236. https://doi.org/10.12989/scs.2014.17.3.215.
- Han, L.H., Yao, G.H. and Zhao, X.L. (2004), "Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns", Steel Compos. Struct., 4(3), 169-188. https://doi.org/10.12989/scs.2004.4.3.169.
- Han, Y. and Vaziri, H. (1992), "Dynamic response of pile groups under lateral loading", Soil Dyn. Earthq. Eng., 11(2), 87-99. https://doi.org/10.1016/0267-7261(92)90047-H.
- Hatamlou, A. (2013), "Black hole: A new heuristic optimization approach for data clustering", Inform. Sci., 222, 175-184. https://doi.org/10.1016/j.ins.2012.08.023.
- He, H., Wang, S., Shen, W. and Zhang, W. (2023), "The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures", Transport. Geotech., 42, 101061. https://doi.org/10.1016/j.trgeo.2023.101061.
- Hou, X., Chen, J., Jin, H., Rui, P., Zhao, J. and Mei, Q. (2020), "Thermal characteristics of cast-in-place pile foundations in warm permafrost at Beiluhe on interior Qinghai-Tibet Plateau: Field observations and numerical simulations", Soils Found., 60(1), 90-102. https://doi.org/10.1016/j.sandf.2020.01.008.
- Huang, H., Huang, M., Zhang, W., Guo, M. and Liu, B. (2022), "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column", Struct. Infrastruct. Eng., 18(2), 249-265. https://doi.org/10.1080/15732479.2020.1841245.
- Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.103123.
- Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8), 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
- Kiefa, M.A. (1998), "General regression neural networks for driven piles in cohesionless soils", J. Geotech. Geoenviron. Eng., 124(12), 1177-1185. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(117.
- Kumar, M. and Samui, P. (2019), "Reliability analysis of pile foundation using ELM and MARS", Geotech. Geolo. Eng., 37, 3447-3457. https://doi.org/10.1007/s10706-018-00777-x.
- Lemonis, M.E. and Daramara, A.G., Georgiadou, A.G., Siorikis, V.G., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 42(4), 459-475. https://doi.org/10.12989/scs.2022.42.4.459.
- Li, N., Asteris, P.G., Tran, T.T., Pradhan, B. and Nguyen, H. (2022), "Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization", Steel Compos. Struct., 42(6), 733-745. https://doi.org/10.12989/scs.2022.42.6.733.
- Likins, G. and Rausche, F. (2004), "Correlation of CAPWAP with static load tests", Proceedings of the Seventh International Conference on the Application of Stresswave Theory to piles 153-165.
- Liu, J., Wang, T. and Wen, Z. (2018), "Research on pile performance and state-of-the-art practice in cold regions", Sci. Cold Arid Regions, 10(1), 1-11. https://doi.org/10.3724/SP.J.1226.2018.00001.
- Long, X., Mao, M.H., Su, T.X, Su, Y.T. and Tian, M.K. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Defence Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003.
- Lu, D., Ma, C., Du, X., Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2), 04016058. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.
- Lu, D., Zhou, X., Du, X. and Wang, G. (2019), "A 3D fractional elastoplastic constitutive model for concrete material", Int. J. Solids Struct., 165, 160-175. https://doi.org/10.1016/j.ijsolstr.2019.02.004.
- Luo, Z., Sinaei, H., Ibrahim, Z., Shariati, M., Jumaat, Z., Wakil, K., Pham, B.T., Mohamad, E.T. and Khorami, M. (2019), "Computational and experimental analysis of beam to column joints reinforced with CFRP plates". Steel and Composite Structures 30 (3), 271-280. https://doi.org/10.12989/scs.2019.30.3.271
- Ly, H.B., Monteiro, E., Le, T.T., Le, V.M., Dal, M., Regnier, G. and Pham, B.T. (2019), "Prediction and sensitivity analysis of bubble dissolution time in 3D selective laser sintering using ensemble decision trees", Materials, 12(9), 1544. https://doi.org/10.3390/ma12091544.
- Ma, X., Dong, Z., Quan, W., Dong, Y. and Tan, Y. (2023), "Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm", Mech. Syst. Signal Processing, 187, 109930. https://doi.org/10.1016/j.ymssp.2022.109930.
- Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
- Melnikov, V., Skvortsov, A., Malkova, G., Drozdov, D., Ponomareva, O., Sadurtdinov, M., Tsarev, A. and Dubrovin, V. (2010), "Seismic studies of frozen ground in Arctic areas", Russian Geology Geophys., 51(1), 136-142. https://doi.org/10.1016/j.rgg.2009.12.011.
- Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations", J. Geotech. Eng. Div., 102(3), 197-228. https://doi.org/10.1061/AJGEB6.0000243.
- Mirjalili, S., Hashim, S., Taherzadeh, G., Mirjalili, S. and Salehi, S. (2011), "A study of different transfer functions for binary version of particle swarm optimization", Int. Conference Genetic Evolutionary Methods, 2-7.
- Moayedi, H. and Armaghani, D.J. (2018), "Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil", Eng. Comput., 34(2), 347-356. https://doi.org/10.1007/s00366-017-0545-7.
- Moayedi, H. and Hayati, S. (2018), "Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile", Int. J. Geomech., 18(6), 11. https://doi.org/10.1061/(asce)gm.1943-5622.0001125.
- Moayedi, H. and Hayati, S. (2019), "Artificial intelligence design charts for predicting friction capacity of driven pile in clay", Neural Comput. Appl., 31(11), 7429-7445. https://doi.org/10.1007/s00521-018-3555-5.
- Moayedi, H. and Rezaei, A. (2019), "An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand", Neural Comput. Appl., 31(2), 327-336. https://doi.org/10.1007/s00521-017-2990-z.
- Moayedi, H., Eghtesad, A., Khajehzadeh, M., Keawsawasvong, S., Al-Amidi, M. and Van, B. (2022), "Optimized ANNs for predicting compressive strength of high-performance concrete", Steel Compos. Struct., 44, 867-882. https://doi.org/10.12989/scs.2022.44.6.867.
- Moayedi, H., Mu'azu, M.A. and Foong, L.K. (2019), "Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles", Eng. Comput., 17. https://doi.org/10.1007/s00366-019-00885-z.
- Mosallanezhad, M. and Moayedi, H. (2017), "Developing hybrid artificial neural network model for predicting uplift resistance of screw piles", Arab. J. Geosci., 10(22), 10. https://doi.org/10.1007/s12517-017-3285-5.
- Nazir, R. and Momeni, E. (2013), "Prediction of axial bearing capacity of spread foundations in cohesionless soils using artificial neural network", Proc. GEOCON 747-757.
- Neukirchner, R. (1987), "Analysis of laterally loaded piles in permafrost", J. Geotech. Eng., 113(1), 15-29. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:1(15).
- Nixon, J. (1984), "Laterally loaded piles in permafrost", Canadian Geotech. J., 21(3), 431-438. https://doi.org/10.1139/t84-047.
- Pal, M. and Deswal, S. (2008), "Modeling pile capacity using support vector machines and generalized regression neural network", J. Geotech. Geoenviron. Eng., 134(7), 1021-1024. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(1021).
- Phukan, A. (1991), Foundation Engineering Handbook. Springer, pp. 735-749.
- Ren, C., Yu, J., Liu, X., Zhang, Z. and Cai, Y. (2022), "Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking", Int. J. Mining Sci. Technol., 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010.
- Roy, S.D., Pandey, A. and Saha, R. (2021), "Shake table study on seismic soil-pile foundation-structure interaction in soft clay", Structures, 1229-1241.
- Ruffini, R. and Wheeler, J.A. (1971), "Introducing the black hole", Physics Today, 24(1), 30-41. https://doi.org/10.1063/1.3022513.
- Samui, P. (2008), "Prediction of friction capacity of driven piles in clay using the support vector machine", Canadian Geotech. J., 45(2), 288-295. https://doi.org/10.1139/T07-072.
- She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Structures, 105289.
- Shelman, A., Levings, J. and Sritharan, S. (2010), "Seismic design of deep bridge pier foundations in seasonally frozen ground".
- Shelman, A., Tantalla, J., Sritharan, S., Nikolaou, S. and Lacy, H. (2014), "Characterization of seasonally frozen soils for seismic design of foundations", J. Geotech. Geoenviron. Eng., 140(7), 04014031.
- Simpson, P. (1990), "Artificial neural system-foundation, paradigm, application and implementation Pergamon Press New York".
- Singer, S. and Nelder, J. (2009), "Nelder-mead algorithm", Scholarpedia, 4(7), 2928. https://doi.org/10.4249/scholarpedia.2928.
- Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y., Liu, Z., Chen, J. and Wang, X. (2023), "Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials", Construct. Build. Mater., 408, 133689. https://doi.org/10.1016/j.conbuildmat.2023.133689.
- Sritharan, S., Suleiman, M.T. and White, D.J. (2007), "Effects of seasonal freezing on bridge column-foundation-soil interaction and their implications", Earthq. Spectra, 23(1), 199-222. https://doi.org/10.1193/1.242307.
- Suleiman, M.T., Sritharan, S. and White, D.J. (2006), "Cyclic lateral load response of bridge column-foundation-soil systems in freezing conditions", J. Struct. Eng., 132(11), 1745-1754. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1745).
- Sun, G., Kong, G., Liu, H. and Amenuvor, A.C. (2017), "Vibration velocity of X-section cast-in-place concrete (XCC) pile-raft foundation model for a ballastless track", Canadian Geotech. J., 54(9), 1340-1345. https://doi.org/10.1139/cgj2015-0623.
- The, C., Wong, K., Goh, A. and Jaritngam, S. (1997), "Prediction of pile capacity using neural networks", J. Comput. Civil Eng., 11(2), 129-138. https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129).
- Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003), "A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters", Water Resources Res., 39(8), https://doi.org/10.1029/2002WR001642.
- Wang, H., Zhang, X. and Jiang, S. (2022), "A laboratory and field universal estimation method for tire-pavement interaction noise (TPIN) based on 3D image technology", Sustainability, 14(19), 12066. https://doi.org/10.3390/su141912066.
- Wang, T., Zhou, G., Wang, J., Zhou, Y. and Chen, T. (2019), "Stochastic coupling analysis of uncertain hydro-thermal properties for embankment in cold regions", Transport. Geotech., 21, 100275. https://doi.org/10.1016/j.trgeo.2019.100275.
- Wang, X., Li, L., Xiang, Y., Wu, Y. and Wei, M. (2024), "The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression", Front. Mater., 10-2023 https://doi.org/10.3389/fmats.2023.1332269.
- Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H., Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
- Wu, Z., Zhang, D., Zhao, T., Ma, J. and Zhao, D. (2019), "An experimental research on damping ratio and dynamic shear modulus ratio of frozen silty clay of the Qinghai-Tibet engineering corridor", Transport. Geotech., 21, 100269. https://doi.org/10.1016/j.trgeo.2019.100269.
- Yang, Z.J., Li, Q., Xu, G. and Hulsey, J.L. (2010), Soil Dynamics and Earthquake Engineering, 162-168.
- Yang, Z.J., Still, B. and Ge, X. (2015), "Mechanical properties of seasonally frozen and permafrost soils at high strain rate", Cold Regions Sci. Technol., 113, 12-19. https://doi.org/10.1016/j.coldregions.2015.02.008.
- Yu, J., Zhu, Y., Yao, W., Liu, X., Ren, C., Cai, Y. and Tang, X. (2021), "Stress relaxation behaviour of marble under cyclic weak disturbance and confining pressures", Measurement, 182, 109777. https://doi.org/10.1016/j.measurement.2021.109777.
- Zatar, W., Xiao, F., Chen, G.S. and Hulsey, J.L. (2021), "Identification of viscoelastic property of pile-soil interactions with fractional derivative model", J. Low Frequency Noise, Vib. Active Control, 40(3), 1392-1400. https://doi.org/10.1177/1461348420979478.
- Zhang, G., Feng, W., Wu, M., Shao, H. and Ma, F. (2021a), "Reservoir bank slope stability prediction model based on BP neural network", Steel Compos. Struct., 41(2), 237-247. https://doi.org/10.12989/scs.2021.41.2.237.
- Zhang, H., Zhou, J., Jahed Armaghani, D., Tahir, M., Pham, B.T. and Huynh, V.V. (2020), "A combination of feature selection and random forest techniques to solve a problem related to blast-induced ground vibration", Appl. Sci., 10(3), 869. https://doi.org/10.3390/app10030869.
- Zhang, J. and Zhang, C. (2023a), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
- Zhang, W., Wu, C., Li, Y., Wang, L. and Samui, P. (2021b), "Assessment of pile drivability using random forest regression and multivariate adaptive regression splines", Georisk: Assessment Manage. Risk Eng. Syst. Geohazards, 15(1), 27-40. https://doi.org/10.1080/17499518.2019.1674340.
- Zhang, X., Yang, Z.J., Chen, X., Guan, J., Pei, W. and Luo, T. (2021c), "Experimental study of frozen soil effect on seismic behavior of bridge pile foundations in cold regions", Structures, 1752-1762.
- Zhang, Y. and Zhang, H. (2023b), "Enhancing robot path planning through a twin-reinforced chimp optimization algorithm and evolutionary programming algorithm", IEEE Access https://doi.org/10.1109/ACCESS.2023.3337602.
- Zhang, Y., Abdullah, S., Ullah, I. and Ghani, F. (2024), "A new approach to neural network via double hierarchy linguistic information: Application in robot selection", Eng. Appl. Artificial Intell., 129, 107581. https://doi.org/10.1016/j.engappai.2023.107581.
- Zhang, Y., Gono, R. and Jasinski, M. (2023), "An improvement in dynamic behavior of single phase PM brushless DC motor using deep neural network and mixture of experts", IEEE Access https://doi.org/10.1109/ACCESS.2023.3289409.
- Zhao, Y., Dai, W., Wang, Z. and Ragab, A.E. (2023), "Application of computer simulation to model transient vibration responses of GPLs reinforced doubly curved concrete panel under instantaneous heating", Mater. Today Commun., 107949. https://doi.org/10.1016/j.mtcomm.2023.107949.
- Zhou, X., Lu, D., Zhang, Y., Du, X. and Rabczuk, T. (2022), "An open-source unconstrained stress updating algorithm for the modified Cam-clay model", Comput. Meth. Appl. Mech. Eng., 390, 114356. https://doi.org/10.1016/j.cma.2021.114356.