DOI QR코드

DOI QR Code

Combination resonances of porous FG shallow shells reinforced with oblique stiffeners subjected to a two-term excitation

  • Kamran Foroutan (Sino-Canada Research Centre of Computation and Mathematics, Qinghai Normal University) ;
  • Liming Dai (Sino-Canada Research Centre of Computation and Mathematics, Qinghai Normal University) ;
  • Haixing Zhao (Sino-Canada Research Centre of Computation and Mathematics, Qinghai Normal University)
  • 투고 : 2023.07.13
  • 심사 : 2024.04.30
  • 발행 : 2024.05.25

초록

The present research investigates the combination resonance behaviors of porous FG shallow shells reinforced with oblique stiffeners and subjected to a two-term excitation. The oblique stiffeners considered in this research reinforce the shell internally and externally. To model the stiffeners, Lekhnitskii's smeared stiffeners technique is utilized. According to the first-order shear deformation theory (FSDT) and stress functions, a nonlinear model of the oblique stiffened shallow shell is established. With regard to the FSDT and von-Kármán nonlinear geometric assumptions, the stress-strain relationships for the present shell system are developed. Also, in order to discretize the nonlinear governing equations, the Galerkin method is implemented. To obtain the required relations for investigating the combination resonance theoretically, the method of multiple scales is applied. For verifying the results of the present research, generated results are compared with previous research. Additionally, a comparison with the P-T method is conducted to increase the validity of the generated results, as this method has illustrated advantages over other numerical methods in terms of accuracy and reliability. In this method, the piecewise constant argument is used jointly with the Taylor series expansion, which is why it is named the P-T method. The effects of stiffeners with different angles, and the effects of material parameters on the combination resonance behaviors of the present system are addressed. With the findings of this research, researchers and engineers in this field may use them as benchmarks for their design and research of porous FG shallow shells.

키워드

과제정보

The authors greatly appreciate the supports of the Natural Sciences and Engineering Research Council of Canada (NSERC), Qinghai Normal University and the University of Regina to the present research.

참고문헌

  1. Abe, A., Kobayashi, Y. and Yamada, G. (2007), "Nonlinear dynamic behaviors of clamped laminated shallow shells with one-to-one internal resonance", J. Sound Vib., 304(3-5), 957-968. https://doi.org/10.1016/j.jsv.2007.03.009.
  2. Ahmadi, H. and Foroutan, K. (2019), "Combination resonance analysis of FG porous cylindrical shell under two-term excitation", Steel Compos. Struct., 32(2), 253-264. https://doi.org/10.12989/scs.2019.32.2.253.
  3. Ahmadi, H., Bayat, A. and Duc, N.D. (2021), "Nonlinear forced vibrations analysis of imperfect stiffened FG doubly curved shallow shell in thermal environment using multiple scales method", Compos. Struct., 256, 113090. https://doi.org/10.1016/j.compstruct.2020.113090.
  4. Alijani, F., Amabili, M., Karagiozis, K. and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound Vib., 330(7), 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003.
  5. Anh, V.T.T., Khoa, N.D., Ngo, T. and Duc, N.D. (2023), "Vibration of hybrid eccentrically stiffened sandwich auxetic double curved shallow shells in thermal environment", Aerosp. Sci. Technol., 137, 108277. https://doi.org/10.1016/j.ast.2023.108277.
  6. Babaei, H. and Eslami, M.R. (2021), "On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory", Compos. Struct., 256, 113125. https://doi.org/10.1016/j.compstruct.2020.113125.
  7. Bakshi, K. and Chakravorty, D. (2013), "Relative static and dynamic performances of composite conoidal shell roofs", Steel Compos. Struct., 15(4), 379-397. https://doi.org/10.12989/scs.2013.15.4.379.
  8. Bich, D.H., Duc, N.D. and Quan, T.Q. (2014), "Nonlinear vibration of imperfect eccentrically stiffened functionally graded double curved shallow shells resting on elastic foundation using the first order shear deformation theory", Int. J. Mech. Sci., 80, 16-28. https://doi.org/10.1016/j.ijmecsci.2013.12.009.
  9. Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002.
  10. Chai, Q. and Wang, Y.Q. (2022), "Traveling wave vibration of graphene platelet reinforced porous joined conical-cylindrical shells in a spinning motion", Eng. Struct., 252, 113718. https://doi.org/10.1016/j.engstruct.2021.113718.
  11. Chan, D.Q., Anh, V.T.T. and Duc, N.D. (2019), "Vibration and nonlinear dynamic response of eccentrically stiffened functionally graded composite truncated conical shells surrounded by an elastic medium in thermal environments", Acta Mech., 230, 157-178. https://doi.org/10.1007/s00707-018-2282-4.
  12. Civalek, O. (2006), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353. https://doi.org/10.12989/scs.2006.6.4.353.
  13. Cong, P.H. and Duc, N.D. (2021), "Nonlinear dynamic analysis of porous eccentrically stiffened double curved shallow auxetic shells in thermal environments", Thin Wall. Struct., 163, 107748. https://doi.org/10.1016/j.tws.2021.107748.
  14. Dai, L. (2008), Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise Constant Arguments, World Scientific Publishing Co, New Jersey, USA.
  15. Dong, D.T., Minh, T.Q. and Nam, V.H. (2022), "Nonlinear Vibration of Shear Deformable FG-CNTRC Plates and Cylindrical Panels Stiffened by FG-CNTRC Stiffeners", Mod. Mech. Eng., 256-270. https://doi.org/10.1007/978-981-16-3239-6_20.
  16. Dong, Y., Gao, Y., Zhu, Q., Moradi, Z. and Safa, M. (2022), "TE-GDQE implementation to investigate the vibration of FG composite conical shells considering a frequency controller solid ring", Eng. Anal. Bound. Elem., 138, 95-107. https://doi.org/10.12989/scs.2020.34.3.361.
  17. Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 99, 88-96. https://doi.org/10.1016/j.compstruct.2012.11.017.
  18. Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi.
  19. Duc, N.D. (2016), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. A-Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.
  20. Duc, N.D. and Quan, T.Q. (2012), "Nonlinear stability analysis of double-curved shallow FGM panels on elastic foundations in thermal environments", Mech. Compos. Mater., 48(4), 435-448. https://doi.org/10.1007/s11029-012-9289-z.
  21. Duc, N.D., Duc Tuan, N., Hong Cong, P., Dinh Dat, N. and Dinh Khoa, N. (2020), "Geometrically nonlinear dynamic response and vibration of shear deformable eccentrically stiffened functionally graded material cylindrical panels subjected to thermal, mechanical, and blast loads", J. Sandwich Struct. Mater., 22(3), 658-688. https://doi.org/10.1177/1099636218765603.
  22. Duc, N.D., Hadavinia, H., Quan, T.Q. and Khoa, N.D. (2019), "Free vibration and nonlinear dynamic response of imperfect nanocomposite FG-CNTRC double curved shallow shells in thermal environment", Eur. J. Mech. A-Solids, 75, 355-366. https://doi.org/10.1016/j.euromechsol.2019.01.024.
  23. Duc, N.D., Khoa, N.D., and Thiem, H.T. (2018a), "Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy's third-order shear deformation shell theory", Mech. Adv. Mater. Struct., 25(13), 1156-1167. https://doi.org/10.1080/15376494.2017.1341581.
  24. Duc, N.D., Quan, T.Q. and Cong, P.H. (2012), Nonlinear Vibration of Auxetic Plates and Shells, Vietnam National University Press, Hanoi.
  25. Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018b), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Thermal Stresses, 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.
  26. Duc, N.D., Seung-Eock, K., Cong, P.H., Anh, N.T. and Khoa, N.D. (2017), "Dynamic response and vibration of composite double curved shallow shells with negative Poisson's ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads", Int. J. Mech. Sci., 133, 504-512. https://doi.org/10.1016/j.ijmecsci.2017.09.009.
  27. Foroutan, K. and Ahmadi, H. (2020a), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. https://doi.org/10.12989/scs.2020.37.1.051.
  28. Foroutan, K. and Ahmadi, H. (2020b), "Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations", Struct. Eng. Mech., 75(1), 87-100. https://doi.org/10.12989/sem.2020.75.1.087.
  29. Foroutan, K. and Dai, L. (2022), "Nonlinear dynamic responses of porous FG sandwich cylindrical shells with a viscoelastic core resting on a nonlinear viscoelastic foundation", Mech. Adv. Mater. Struct., 1-20. https://doi.org/10.1080/15376494.2022.2070803.
  30. Foroutan, K., Ahmadi, H. and Shariyat, M. (2020), "Asymmetric large deformation superharmonic and subharmonic resonances of spiral stiffened imperfect FG cylindrical shells resting on generalized nonlinear viscoelastic foundations", Int. J. Appl. Mech., 12(05), 2050052. https://doi.org/10.1142/S1758825120500520.
  31. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2019), "Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation", Steel Compos. Struct., 32(4), 509-519. https://doi.org/10.12989/scs.2019.32.4.509.
  32. Gao, K., Gao, W., Wu, B., Wu, D. and Song, C. (2018), "Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales", Thin Wall. Struct., 125, 281-293. https://doi.org/10.1016/j.tws.2017.12.039.
  33. Harbaoui, I., Khadimallah, M.A., Benslimane, A., Jin, G. and Civalek, O. (2021), "Formulation of continuous element of prestressed stiffened circular cylindrical shell", Steel Compos. Struct., 41(4), 521-531. https://doi.org/10.12989/scs.2021.41.4.521.
  34. Huang, S.C. and Hsu, B.S. (1990), "Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load", J. Sound Vib., 136(2), 215-228. https://doi.org/10.1016/0022-460X(90)90852-Q.
  35. Jahangiri, R., Rezaee, M. and Manafi, H. (2022), "Nonlinear and chaotic vibrations of FG double curved sandwich shallow shells resting on visco-elastic nonlinear Hetenyi foundation under combined resonances", Compos. Struct., 295, 115721. https://doi.org/10.1016/j.compstruct.2022.115721.
  36. Karimiasl, M., Ebrahimi, F. and Akgoz, B. (2019), "Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading", Compos. Struct., 223, 110988. https://doi.org/10.1016/j.compstruct.2019.110988.
  37. Liang, B., Yang, M., Liu, L.X. and Li, R. (2021), "Vibration analysis of ribbed and ring-stiffened FG cylindrical shell under hydrostatic pressure", AIP Adv., 11(4), 045108. https://doi.org/10.1063/5.0039721.
  38. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1: 1 internal resonance", Appl. Math. Mech., 42(6), 805-818. https://doi.org/10.1007/s10483-021-2740-7.
  39. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  40. Nam, V.H., Phuong, N.T., Van Minh, K. and Hieu, P.T. (2018), "Nonlinear thermo-mechanical buckling and post-buckling of multilayer FGM cylindrical shell reinforced by spiral stiffeners surrounded by elastic foundation subjected to torsional loads", Eur. J. Mech. A-Solids, 72, 393-406. https://doi.org/10.1016/j.euromechsol.2018.06.005.
  41. Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear oscillations, John Wiley & Sons, Virginia, USA.
  42. Ninh, D.G. and Bich, D.H. (2016a), "Nonlinear buckling of eccentrically stiffened functionally graded toroidal shell segments under torsional load surrounded by elastic foundation in thermal environment", Mech. Res. Commun., 72, 1-15. https://doi.org/10.1016/j.mechrescom.2015.12.002.
  43. Ninh, D.G. and Bich, D.H. (2016b), "Nonlinear thermal vibration of eccentrically stiffened ceramic-FGM-metal layer toroidal shell segments surrounded by elastic foundation", Thin Wall. Struct., 104, 198-210. https://doi.org/10.1016/j.tws.2016.03.018.
  44. Orafa, A.H., Jalili, M.M. and Fotuhi, A.R. (2021), "Nonlinear vibro-acoustic behavior of cylindrical shell under primary resonances", Int. J. Non-Linear Mech., 130, 103682. https://doi.org/10.1016/j.ijnonlinmec.2021.103682.
  45. Quan, T.Q. and Duc, N.D. (2016), "Nonlinear vibration and dynamic response of shear deformable imperfect functionally graded double-curved shallow shells resting on elastic foundations in thermal environments", J. thermal Stresses, 39(4), 437-459. https://doi.org/10.1080/01495739.2016.1158601.
  46. Quan, T.Q., Anh, V.M., Mahesh, V. and Duc, N.D. (2022), "Vibration and nonlinear dynamic response of imperfect sandwich piezoelectric auxetic plate", Mech. Adv. Mater. Struct., 29(1), 127-137. https://doi.org/10.1080/15376494.2020.1752864.
  47. Quan, T.Q., Tran, P., Tuan, N.D. and Duc, N.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable eccentrically stiffened S-FGM cylindrical panels with metal-ceramic-metal layers resting on elastic foundations", Compos. Struct., 126, 16-33. https://doi.org/10.1016/j.compstruct.2015.02.056.
  48. Rahmani, M. and Mohammadi, Y. (2021), "Vibration of two types of porous FG sandwich conical shell with different boundary conditions", Struct. Eng. Mech., 79(4), 401. https://doi.org/10.12989/sem.2021.79.4.401.
  49. Rostami, R., Mohamadimehr, M. and Rahaghi, M.I. (2019), "Dynamic stability and nonlinear vibration of rotating sandwich cylindrical shell with considering FG core integrated with sensor and actuator", Steel Compos. Struct., 32(2), 225-237. https://doi.org/10.12989/scs.2019.32.2.225.
  50. Setoodeh, A.R., Shojaee, M. and Malekzadeh, P. (2019), "Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core", Compos. B. Eng., 165, 798-822. https://doi.org/10.1016/j.compositesb.2019.01.022.
  51. Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-76. https://doi.org/10.12989/scs.2020.34.3.361.
  52. Sheng, G.G. and Wang, X. (2018), "The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells", Appl. Math. Model., 56, 389-403. https://doi.org/10.1016/j.apm.2017.12.021.
  53. Sofiyev, A.H. and Turan, F. (2021), "On the nonlinear vibration of heterogenous orthotropic shallow shells in the framework of the shear deformation shell theory", Thin Wall. Struct., 161, 107181. https://doi.org/10.1016/j.tws.2020.107181.
  54. Sofiyev, A.H., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the nonlinear elastic foundations within the shear deformation theory", Compos. Struct., 159 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048.
  55. Van Long, N., Thinh, T.I., Bich, D.H. and Tu, T.M. (2022), "Nonlinear dynamic responses of sandwich-FGM doubly curved shallow shells subjected to underwater explosions using first-order shear deformation theory", Ocean Eng., 260, 111886. https://doi.org/10.1016/j.oceaneng.2022.111886.
  56. Vuong, P.M. and Duc, N.D. (2018), "Nonlinear response and buckling analysis of eccentrically stiffened FGM toroidal shell segments in thermal environment", Aerosp. Sci. Technol., 79, 383-398. https://doi.org/10.1016/j.ast.2018.05.058.
  57. Wang, Y.Q. and Zu, J. W. (2017), "Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment", Aerosp. Sci. Technol., 69, 550-562. https://doi.org/10.1016/j.ast.2017.07.023.
  58. Wang, Y.Q., Chai, Q. and Xing, W.C. (2023), "Vibrations of joined conical-cylindrical shells with bolt connections: Theory and experiment", J. Sound Vib., 554, 117695. https://doi.org/10.1016/j.jsv.2023.117695.
  59. Wang, Y.Q., Guo, X.H., Chang, H.H. and Li, H.Y. (2010), "Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape-Part I: Numerical solution", Int. J. Mech. Sci., 52(9), 1217-1224. https://doi.org/10.1016/j.ijmecsci.2010.05.008.
  60. Wang, Y.Q., Ye, C. and Zu, J.W. (2018), "Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities", Appl. Math. Mech., 39(11), 1587-1604. https://doi.org/10.1007/s10483-018-2388-6.
  61. Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets", Aerosp. Sci. Technol., 85, 359-370. https://doi.org/10.1016/j.ast.2018.12.022.
  62. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  63. Wu, M.Q., Zhang, W. and Niu, Y. (2021), "Experimental and numerical studies on nonlinear vibrations and dynamic snap-through phenomena of bistable asymmetric composite laminated shallow shell under center foundation excitation", Eur. J. Mech. A-Solids, 89, 104303. https://doi.org/10.1016/j.euromechsol.2021.104303.
  64. Xing, W.C. and Wang, Y.Q. (2024), "Dynamic modeling and vibration analysis of bolted flange joint disk-drum structures: Theory and experiment", Int. J. Mech. Sci., 272, 109186. https://doi.org/10.1016/j.ijmecsci.2024.109186.
  65. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.
  66. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlinear Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  67. Zhang, W., Liu, T., Xi, A. and Wang, Y.N. (2018), "Resonant responses and chaotic dynamics of composite laminated circular cylindrical shell with membranes", J. Sound Vib., 423, 65-99. https://doi.org/10.1016/j.jsv.2018.02.049.
  68. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  69. Zhao, J., Xie, F., Wang, A., Shuai, C., Tang, J. and Wang, Q. (2019), "A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions", Compos. B. Eng., 156, 406-424. https://doi.org/10.1016/j.compositesb.2018.08.115.
  70. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 68(1-3), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.