Acknowledgement
This research was supported by and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776).
References
- Banh, T.T. and Lee, D. (2024), "Comprehensive polygonal topology optimization for triplet thermo-mechanical-pressure multi-material systems", Eng. Comput., https://doi.org/10.1007/s00366-024-01982-4.
- Banh, T.T., Lieu, Q.X., Kang, J., Ju, Y., Shin, S. and Lee D. (2023c), "A novel robust stress-based multimaterial topology optimization model for structural stability framework using refined adaptive continuation method", Eng. Comput., 1-37.
- Banh, T.T., Lieu, X.Q., Lee, J., Kang, J. and Lee, D. (2023b), "A robust dynamic unified multi-material topology optimization method for functionally graded structures", Struct. Multidiscipl. Optimiz., 66. https://doi.org/10.1007/s00158-023-03501-3.
- Banh, T.T., Luu, G.N. and Lee D. (2023a), "A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities", Steel Compos. Struct., 48, 73-88. https://doi.org/10.12989/scs.2023.48.1.073.
- Banh, T.T., Luu, G.N., Lieu, X.Q., Lee, J., Kang, J. and Lee, D. (2021b), "Multiple bi-directional FGMs topology optimization approach with a preconditioned conjugate gradient multigrid", Steel Compos. Struct., 41(3), 385-402. https://doi.org/10.12989/scs.2021.41.3.385.
- Banh, T.T., Luu, N.G. and Lee, D. (2021a), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
- Banh, T.T., Shin, S., Kang, J. and Lee D. (2024a), "Frequency-constrained topology optimization in incompressible multi-material systems under design-dependent loads", Thin-Wall. Struct., 196, 111467. https://doi.org/10.1016/j.tws.2023.111467.
- Banh, T.T., Shin, S., Kang, J. and Lee D. (2024b), "Comprehensive multi-material topology optimization for stress-driven design with refined volume constraint subjected to harmonic force excitation", Eng. Comput., https://doi.org/10.1007/s00366-023-01939-z.
- Batchelor, G. (2000), "An introduction to fluid dynamics", Cambridge Univ. Press.
- Bendsoe M.P. and Kikuchi, N. (1988), "Generating optimal topologies in structural design using homogenization", Comput. Meth. Appl. Mech. Eng., 71, 197-224. https://doi.org/10.1016/0045-7825(88)90086-2.
- Bendsoe, M.P. (2011), "Optimal shape design as a material distribution problem", Struct Optim., 10, 193-202. https://doi.org/10.1007/BF01650949.
- Bendsoe, M.P. and Sigmund,, O. (1999), "Material interpolation in topology optimization", Arch. Appl. Mech., 69, 635-654. https://doi.org/10.1007/s004190050248.
- Cai, K., Cao, J., Shi, J., Liu, L. and Qin, Q.H. (2016), "Optimal layout of multiple bi-modulus materials", Struct. Multidiscipl. Optimiz., 53, 801-811. https://doi.org/10.1007/s00158-015-1365-2
- Chen, B.C. and Kikuchi, N. (2001), "Topology optimization with design-dependent loads", Finite Elem Anal Des., 39, 57-70. https://doi.org/10.1016/S0168-874X(00)00021-4.
- Floater, M., Gillette, A. and Sukumar, N. (2014), "Gradient bounds for Wachspress coordinates on polytopes", SIAM J. Numer. Anal., 52(1), 515-532. https://doi.org/10.1137/130925712.
- Hammer, V. and Olhoff, N. (2000), "Topology optimization of continuum structures subjected to pressure loading", Struct Multidisc Optim, 19, 85-92. https://doi.org/10.1007/s001580050088.
- Kumar, P. (2023), "TOPress: a MATLAB implementation for topology optimization of structures subjected to design-dependent pressure loads", Struct. Multidisc. Optim., 66(4), 97. https://doi.org/10.1007/s00158-023-03533-9.
- Kumar, P., Frouws, J.S. and Langelaar, M. (2020), "Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method", Struct Multidisc Optim, 62, 1637-1655. https://doi.org/10.1007/s00158-019-02442-0.
- Li, D., Kim, I.Y. (2018), "Multi-material topology optimization for practical lightweight design", Struct. Multidiscipl. Optimiz., 58, 1081-1094. https://doi.org/10.1007/s00158-018-1953-z
- Liao, J., Huang, G., Chen, X., Yu, Z. and Huang, Q. (2021), "A guide-weight criterion-based topology optimization method for maximizing the fundamental eigenfrequency of the continuum structure", Struct. Multidiscipl. Optimiz.. https://doi.org/10.1007/s00158-021-02971-7.
- Lieu, X.Q. and Lee J. (2017a), "Multiresolution topology optimization using isogeometric analysis", Int. J. Numer. Meth. Eng., 112, 2025-2047. https://doi.org/10.1002/nme.5593.
- Lieu, X.Q. and Lee, J. (2017b), "A multi-resolution approach for multi-material topology optimization based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 323, 272-302. https://doi.org/10.1016/j.cma.2017.05.009.
- Luo, Y., Li, Q. and Liu, S. (2019), "A projection-based method for topology optimization of structures with graded surfaces", Int. J. Numer. Meth. Eng., 118, 654-677. https://doi.org/10.1002/nme.6031.
- Paulino, G.H. and Silva, E.C.N. (2005), "Design of functionally graded structures using topology optimization", Mater. Sci. Forum, 492-493, 435-440. www.scientific.net/MSF.492-493.435. https://doi.org/10.4028/www.scientific.net/MSF.492-493.435
- Pedersen, N.L. (2000), "Maximization of eigenvalue using topology optimization", Struct. Multidiscipl. Optimiz., 20, 2-11. https://doi.org/10.1007/s001580050130.
- Silva, E.C.N. and Paulino, G.H. (2004), "Topology optimization applied to the design of functionally graded material (FGM) structures", In: Proceedings of 21st international congress of theoretical and applied mechanics (ICTAM), Warsaw, 15-21. https://doi.org/10.12989/scs.2021.41.3.385.
- Stolpe, M. and Svanberg, K. (2001), "An alternative interpolation scheme for minimum compliance topology optimization", Struct. Multidisc. Optim., 22, 116-124. https://doi.org/10.1007/s001580100129.
- Svanberg, K. (1987), "The method of moving asymptotes - A new method for structural optimization", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207.
- Talischi, C., Paulino, G.H. and Pereira A. (2012), "PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes", Struct. Multidiscipl. Optimiz., 45, 329-357. https://doi.org/10.1007/s00158-011-0696-x
- Wachspress, E.L. (1975), "A Rational Finite Element Basis", Academic Press.
- Wang, B., Bai, J., Lu, S. and Zuo, W. (2023), "Structural topology optimization considering geometrical and load nonlinearities", Comput. Struct., 289, 107190. https://doi.org/10.1016/j.compstruc.2023.107190.
- Yap, H.K., Ng, H.Y. and Yeow, C.H. (2016), "High-force soft printable pneumatics for soft robotic applications", Soft Robotics, 3(3), 144-158. https://doi.org/10.1089/soro.2016.0030.
- Zolfagharian, A., Kouzani, A.Z., Khoo S.Y., Moghadam A.A.A., Gibson I. and Kaynak A. (2016), "Evolution of 3D printed soft actuators", Sensors Actuators A: Physic., 250, 258-272. https://doi.org/10.1016/j.sna.2016.09.028.