DOI QR코드

DOI QR Code

Analytical and numerical investigation of the cyclic behavior of angled U-shape damper

  • 투고 : 2023.08.27
  • 심사 : 2024.05.02
  • 발행 : 2024.05.10

초록

Yielding dampers exhibit varying cyclic behavior based on their geometry. These dampers not only increase the energy dissipation of the structure but also increase the strength and stiffness of the structure. In this study, parametric investigations were carried out to explore the impact of angled U-shape damper (AUSD) dimensions on its cyclic behavior. Initially, the numerical model was calibrated using the experimental specimen. Subsequently, analytical equations were presented to calculate the yield strength and elastic stiffness, which agreed with the experimental results. The outcomes of the parametric studies encompassed ultimate strength, effective stiffness, energy dissipation, and equivalent viscous damper ratio (EVDR). These output parameters were compared with similar dampers. Also, the magnitude of the effect of damper dimensions on the results was investigated. The results of parametric studies showed that the yield strength is independent of the damper width. The length and thickness of the damper have the greatest effect on the elastic stiffness. Reducing length and width resulted in increased energy dissipation, effective stiffness, and ultimate strength. Damper width had a more significant effect on EVDR than its length. On average, every 5 mm increase in damper thickness resulted in a 3.6 times increase in energy dissipation, 3 times the effective stiffness, and 3 times the ultimate strength of the model. Every 15 mm reduction in damper width and length increased energy dissipation by 14% and 24%, respectively.

키워드

참고문헌

  1. Aghlara, R., Tahir, M.M. and Adnan, A.B. (2018), "Experimental study of Pipe-Fuse Damper for passive energy dissipation in structures", J. Construct. Steel Res., 148, 351-360. https://doi.org/10.1016/j.jcsr.2018.06.004. 
  2. Aliakbari, F., Garivani, S. and Aghakouchak, A.A. (2020), "An energy based method for seismic design of frame structures equipped with metallic yielding dampers considering uniform inter-story drift concept", Eng. Struct., 205, 110114. https://doi.org/10.1016/j.engstruct.2019.110114. 
  3. Bagheri, S., Barghian, M., Saieri, F. and Farzinfar, A. (2015), "U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper", Structures, 3, 163-171. https://doi.org/10.1016/j.istruc.2015.04.003. 
  4. Balik, F.S., Bahadir, F. and Emir, F. (2021), "Behavior of steel cross members with metallic damper under a monotonic loading effect", Structures, 32, 946-957. https://doi.org/10.1016/j.istruc.2021.03.078. 
  5. Chaboche, J.L. (2008), "A review of some plasticity and viscoplasticity constitutive theories", Int. J. Plasticity, 24(10), 1642-1693. https://doi.org/10.1016/j.ijplas.2008.03.009. 
  6. Chaboche, J.L., Kanoute, P. and Azzouz, F. (2012), "Cyclic inelastic constitutive equations and their impact on the fatigue life predictions", Int. J. Plasticity, 35, 44-66. https://doi.org/10.1016/j.ijplas.2012.01.010. 
  7. Chan, R.W.K. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struct., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005. 
  8. Cheraghi, K., Tahamouliroudsari, M. and Kiasat, S. (2023a), "Numerical and analytical investigation of U-shape dampers and its effect on steel frames", Structures, 55, 498-509. https://doi.org/10.1016/j.istruc.2023.06.037. 
  9. Cheraghi, K., Tahamouliroudsari, M., Kiasat, S. and Cheraghi, K. (2024 ), "Numerical and analytical investigation of cyclic behavior of D-Shape yielding damper", Struct. Eng. Mech., 89(4), 411-420.https://doi.org/10.12989/sem.2024.89.4.411. 
  10. Cheraghi, K., Tavana, M.H. and Aghayari, R. (2023b), "Investigating the effect of low-yield yielding dampers on the seismic behavior of steel frames", Periodica Polytechnica Civil Eng., https://doi.org/10.3311/PPci.21804. 
  11. Farsi, A., Amiri, H.R. and Dehghan Manshadi, S.H. (2021), "An innovative C-shaped yielding metallic dampers for steel structures", Structures, 34, 4254-4268. https://doi.org/10.1016/j.istruc.2021.08.069. 
  12. Garivani, S., Aghakouchak, A.A. and Shahbeyk, S. (2016), "Numerical and experimental study of comb-teeth metallic yielding dampers", Int. J. Steel Struct., 16(1), 177-196. https://doi.org/10.1007/s13296-016-3014-z. 
  13. Ghaedi, K., Javanmardi, A., Ibrahim, Z., Gordan, M., Rashid, R.S., Khatibi, H. and Vaghei, R. (2023), "Experimental and numerical studies on the cyclic performance of structural frames equipped with bar dampers", Structures, 50, 707-722. https://doi.org/10.1016/j.istruc.2023.02.070. 
  14. Ghamari, A., Haeri, H., Khaloo, A. and Zhu, Z. (2019), "Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper", Steel Compos. Struct., 30(4), 383-392. https://doi.org/10.12989/scs.2019.30.4.383. 
  15. Ghamari, A., Kim, Y.-J. and Bae, J. (2021), "Utilizing an I-shaped shear link as a damper to improve the behaviour of a concentrically braced frame", J. Construct. Steel Res., 186, 106915. https://doi.org/10.1016/j.jcsr.2021.106915. 
  16. Ghamari, A., Thongchom, C., Putra Jaya, R. and Sithole, T. (2023), "Utilizing low yield point steel to improve the behavior of the I-Shaped shear links as dampers", Buildings, 13(2), 554. https://doi.org/10.3390/buildings13020554. 
  17. Gorji Azandariani, M., Abdolmaleki, H. and Gorji Azandariani, A. (2020a), "Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs)", Thin-Wall. Struct., 151, 106751. https://doi.org/10.1016/j.tws.2020.106751. 
  18. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020b), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Construct. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145. 
  19. Guo, L., Wang, J., Wang, W. and Wang, H. (2021), "Experimental, numerical and analytical study on seismic performance of shear-bending yielding coupling dampers", Eng. Struct., 244, 112724. https://doi.org/10.1016/j.engstruct.2021.112724. 
  20. Hibbeler, R.C. and Tan, K.-H. (2006), Structural Analysis, Pearson Prentice Hall Upper Saddle River. 
  21. Hsu, H.L. and Halim, H. (2018), "Brace performance with steel curved dampers and amplified deformation mechanisms", Eng. Struct., 175, 628-644. https://doi.org/10.1016/j.engstruct.2018.08.052. 
  22. Kheyroddin, A., Gholhaki, M. and Pachideh, G. (2019), "Seismic evaluation of reinforced concrete moment frames retrofitted with steel braces using IDA and pushover methods in the nearfault field", J. Rehab. Civil Eng., 7(1), 159-173. https://doi.org/10.22075/jrce.2018.12347.1211. 
  23. Kim S.-W. and Kim, K.-H. (2020), "Evaluation of structural behavior of hysteretic steel dampers under cyclic loading", Appl. Sci., 10(22), 8264. https://doi.org/10.3390/app10228264. 
  24. Kim, J., Kim, M. and Eldin, M.N. (2017), "Optimal distribution of steel plate slit dampers for seismic retrofit of structures", Steel Compos. Struct, 25(4), 473-484. https://doi.org/10.12989/scs.2017.25.4.473. 
  25. Lie, W., Wu, C., Luo, W., Wu, C., Li, C., Li, D. and Wu, C. (2022), "Cyclic behaviour of a novel torsional steel-tube damper", J. Construct. Steel Res., 188, 107010.https://doi.org/10.1016/j.jcsr.2021.107010. 
  26. Lor, H.A., Izadinia, M. and Memarzadeh, P. (2019), "Experimental evaluation of steel connections with horizontal slit dampers", Steel Compos. Struct., 32(1), 79. https://doi.org/10.12989/scs.2019.32.1.079. 
  27. Lotfi Mahyari, S., Tajmir Riahi, H. and Hashemi, M. (2019), "Investigating the analytical and experimental performance of a pure torsional yielding damper", J. Construct. Steel Res., 161, 385-399. https://doi.org/10.1016/j.jcsr.2019.07.010. 
  28. Men, J., Wang, J., Zhang, Q., Fan, D., Zhou, Q. and Huang, C.-H. (2023), "Experimental and numerical study on cyclic behavior of a shape-optimized composite metallic yield damper with two-phase energy dissipation", Structures, 53, 1012-1029. https://doi.org/10.1016/j.istruc.2023.05.007. 
  29. Pachideh, G., Gholhaki, M. and Kafi, M. (2020a), "Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper", Steel Compos. Struct., 36(2), 197. https://doi.org/10.12989/scs.2020.36.2.197. 
  30. Pachideh, G., Gholhaki, M., Lashkari, R. and Rezaifar, O. (2020b), "Behavior of BRB Equipped with a Casing Comprised of Steel and Polyamide", Proceedings of the Institution of Civil Engineers - Structures and Buildings, 174, 1-38. https://doi.org/10.1680/jstbu.19.00206. 
  31. Pachideh, G., Kafi, M. and Gholhaki, M. (2020c), "Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater", Structures, 28, 467-481. https://doi.org/10.1016/j.istruc.2020.09.007. 
  32. Qiu, C.-X., Huang, T.-Y., Wang, Y.-Z. and Qian, H.-J. (2023), "Theoretical and experimental study on seismic performance of T-section metallic damper", J. Construct. Steel Res., 211, 108161. https://doi.org/10.1016/j.jcsr.2023.108161. 
  33. Rousta, A.M. and Azandariani, M.G. (2022), "Micro-finite element and analytical investigations of seismic dampers with steel ring plates", Steel Compos. Struct., 43(5), 565-579. https://doi.org/10.12989/scs.2022.43.5.565. 
  34. Sahoo, D.R., Singhal, T., Taraithia, S.S. and Saini, A. (2015), "Cyclic behavior of shear-and-flexural yielding metallic dampers", J. Construct. Steel Res., 114, 247-257. https://doi.org/10.1016/j.jcsr.2015.08.006. 
  35. Shirinkam, M.R. and Razzaghi, J. (2020), "Experimental and analytical investigation on the behavior of metallic Box-Shaped Dampers (BSD)", Structures, 23, 766-778. https://doi.org/10.1016/j.istruc.2019.12.018. 
  36. Soong, T.T. and Spencer, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X. 
  37. Tahamouliroudsari, M., Cheraghi, K. and Aghayari, R. (2022), "Investigating the retrofit of RC frames using TADAS yielding dampers"m Struct. Durability Health Monit., 16(4), 343-359. https://doi.org/10.32604/sdhm.2022.07927. 
  38. Tahamouliroudsari, M., Cheraghi, K. and Habibi, M.R. (2019), "Investigation of retrofitting RC moment resisting frames with ADAS yielding dampers", Asian J. Civil Eng., 20(1), 125-133. https://doi.org/10.1007/s42107-018-0092-6. 
  39. Tahamouliroudsari, M., Eslamimanesh, M.B., Entezari, A.R., Noori, O. and Torkaman, M. (2018), "Experimental assessment of retrofitting RC moment resisting frames with ADAS and TADAS yielding dampers", Structures, 14, 75-87. https://doi.org/10.1016/j.istruc.2018.02.005. 
  40. Teruna, D.R., Majid, T.A. and Budiono, B. (2015), "Experimental study of hysteretic steel damper for energy dissipation capacity", Adv. Civil Eng., 2015, 631726. https://doi.org/10.1155/2015/631726. 
  41. Wang, J., Men, J., Zhang, Q., Fan, D., Zhang, Z. and Huang, C.-H. (2022), "Seismic performance evaluation of a novel shape-optimized composite metallic yielding damper", Eng. Struct., 268, 114714. https://doi.org/10.1016/j.engstruct.2022.114714. 
  42. Xu, G. and Ou, J. (2022), "Seismic performance of combined rotational friction and flexural yielding metallic dampers", J. Build. Eng., 49, 104059. https://doi.org/10.1016/j.jobe.2022.104059. 
  43. Xu, L.-Y., Nie, X. and Fan, J.-S. (2016), "Cyclic behaviour of low-yield-point steel shear panel dampers", Eng. Struct., 126, 391-404. https://doi.org/10.1016/j.engstruct.2016.08.002. 
  44. Zhao, J.-Z., Tao, M.-X., Wu, Z.-H. and Zhuang, L.-D. (2022), "Experimental and numerical study on bent shear panel damper made of BLY160 steel", Eng. Struct., 260, 114229. https://doi.org/10.1016/j.engstruct.2022.114229.