DOI QR코드

DOI QR Code

Displacement-based design method for an energy-dissipation self-centering wall panel structure

  • Sisi Chao (School of Civil & Architecture Engineering, Xi'an Technological University) ;
  • Guanqi Lan (School of Civil Engineering, Xi'an Shiyou University) ;
  • Hua Huang (School of Civil & Architecture Engineering, Xi'an Technological University) ;
  • Huiping Liu (School of Civil & Architecture Engineering, Xi'an Technological University) ;
  • Chenghua Li (School of Civil & Architecture Engineering, Xi'an Technological University)
  • 투고 : 2022.05.20
  • 심사 : 2024.05.02
  • 발행 : 2024.05.10

초록

The seismic performance of traditional steel frame-shear wall structures was significantly improved by the application of self-centering steel-reinforced concrete (SRC) wall-panel structures in the steel frames. This novel resilience functionality can rapidly restore the structure after an earthquake. The presented steel frame with steel-reinforced concrete self-centering wall-panel structures (SF-SCW) was validated, indicating its excellent seismic performance. The seismic design method based on bear capacity cannot correctly predict the elastic-plastic performance of the structure, especially certain weak floors that might be caused by a major fracture. A four-level seismic performance index, including intact function, continued utilization, life safety, and near-collapse, was established to achieve the ideal failure mode. The seismic design method, based on structural displacement, was proposed by considering performance objectives of the different seismic action levels. The pushover analysis of a six-floor SF-SCW structure was carried out under the proposed design method and the results showed that this six-floor structure could achieve the predicted failure mode.

키워드

과제정보

The research described in this paper was financially supported by the National Natural Science Foundation of China (No. 52308204), the Natural Science Basic Research Program of Shaanxi (No. 2023-JC-QN-0479), the project of Shaanxi Outstanding Youth Science Foundation (2023-JCJQ-47), the project of Shaanxi International Science and Technology Cooperation Program Project (2024GHZDXM-18), the project of Shaanxi University Youth Innovation Team Program (2023), Xi'an Science and Technology Program (23GXFW0035), and the Fundamental Research Funds for the Central Universities, CHD (No. 300102282504). The supports are gratefully acknowledged. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the writers and do not necessarily reflect the views of the sponsors.

참고문헌

  1. ABAQUS (2011), Abaqus Analysis User's Manual, (Version 6.10), Dassault Systemes Simulia Corp Providence, RI, USA. 
  2. ACI Committee 318 (2002), Building Code Requirement for Structural Concrete, American Concrete Institute, Detroit.
  3. Afefy, H.M. (2020), "Seismic retrofitting of reinforced-concrete coupled shear walls: A review", Practice Periodical Struct. Des. Construct., 25(3), https://doi.org/10.1061/(asce)sc.1943-5576.0000489. 
  4. Bagheri and Oh, S.-H. (2018), "Seismic design of coupled shear wall building linked by hysteretic dampers using energy based seismic design", Int. J. Steel Struct., 18(1), 225-253. https://doi.org/10.1007/s13296-018-0318-1. 
  5. Benazouz, C., Moussa, L. and Ali, Z. (2012), "Ductility and inelastic deformation demands of structures", Struct. Eng. Mech., 42(5), 631-644. https://doi.org/10.12989/sem.2012.42.5.631. 
  6. Chao, S.S., Wu, H.H., Zhou, T.H., Guo, T. and Wang, C.L. (2019), "Application of self-centering wall panel with replaceable energy dissipation devices in steel frames", Steel Compos. Struct., 32(2), 265-279. https://doi.org/10.12989/scs.2019.32.2.265. 
  7. Chikh, B., Mebarki, A., Laouami, N., Leblouba, M., Mehani, Y., Hadid, M. and Benouar, D. (2017), "Seismic structural demands and inelastic deformation ratios: a theoretical approach", Earthq. Struct., 12(4), 397-407. https://doi.org/10.12989/eas.2017.12.4.397. 
  8. Cui, Y., Lu, X.L. and Jiang, C. (2017), "Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests", Eng. Struct., 132, 684-694. https://doi.org/10.1016/j.engstruct.2016.11.066. 
  9. Dall'Asta, A., Leoni, G., Morelli, F., Salvatore, W. and Zona, A. (2017), "An innovative seismic-resistant steel frame with reinforced concrete infill walls", Eng. Struct., 141, 144-158. https://doi.org/10.1016/j.engstruct.2017.03.019. 
  10. Dang, X.L., Lv, X.L. and Zhou, Y. (2014), "Experimental study and numerical simulation of self-centering shear walls with horizontal bottom slit", Earthq. Eng. Eng. Dyn., 34(4), 154-161. https://doi.org/10.13197/j.eeev.2014.04.154.dangxl.020. 
  11. Davoodnabi, S.M., Mirhosseini, S.M. and Shariati, M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141. 
  12. Filiatrault, A., Perrone, D., Merino, R.J. and Calvi, G.M. (2021), "Performance-based seismic design of nonstructural building elements", J. Earthq. Eng., 25(2), 237-269. https://doi.org/10.1080/13632469.2018.1512910. 
  13. GB50011 (2010), Code for Seismic Design of Buildings, China Architecture and Building Press, Beijing, China. 
  14. Ghasemi, S., Nezamabadi, M.F., Moghadam, A.S. and Hosseini, M. (2021), "Optimization of relative-span ratio in rocking steel braced dual-frames", Bull. Earthq. Eng., 19(2), 805-829. https://doi.org/10.1007/s10518-020-00998-7. 
  15. Henry, R.S., Sritharan, S. and Ingham, J.M. (2016), "Finite element analysis of the PreWEC self-centering concrete wall system", Eng. Struct., 115, 28-41. https://doi.org/10.1016/j.engstruct.2016.02.029. 
  16. Hu, S.L., Wang, W. and Alam, M.S. (2022), "Performance-based seismic design method for retrofitting steel moment-resisting frames with self-centering energy-absorbing dual rocking core system", J. Construct. Steel Res., 188, 106986. https://doi.org/10.1016/j.jcsr.2021.106986. 
  17. Hu, S.L., Wang, W., Alam, M.S. and Qu, B. (2021), "Performance-based design of self-centering energy-absorbing dual rocking core system", J. Construct. Steel Res., 181. https://doi.org/10.1016/j.jcsr.2021.106630. 
  18. Huang, X.G., Zhou, Z. and Wang, Y.H. (2020), "Seismic design and performance of self-centering-beam moment-frames", J. Construct. Steel Res., 170. https://doi.org/10.1016/j.jcsr.2020.106089. 
  19. Jia, L.J., Li, R.W., Xiang, P., Zhou, D.Y. and Dong, Y. (2018), "Resilient steel frames installed with self-centering dual-steel buckling-restrained brace", J. Construct. Steel Res., 149, 95-104. https://doi.org/10.1016/j.jcsr.2018.07.001. 
  20. Khanmohammadi, M. and Heydari, S. (2015), "Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems", Eng. Struct., 100, 577-589. https://doi.org/10.1016/j.engstruct.2015.06.043. 
  21. Khorramian, K., Maleki, S., Shariati, M., Jalali, A. and Tahir, M.M. (2017), "Numerical analysis of tilted angle shear connectors in steel-concrete composite systems", Steel Compos. Struct., 23(1), 67-85. https://doi.org/10.12989/scs.2017.23.1.067. 
  22. Kurama, Y., Sause, R. and Pessiki, S. (1999), "Lateral Load Behavior and Seismic Design of Unbonded Post-Tensioned Precast Concrete Walls", ACI Struct. J., 96(4), 622-633. https://doi.org/10.1007/BF02481640. 
  23. Kurama, Y.C. (2000), "Seismic design of unbounded posttensioned precast concrete walls with supplemental viscous damping", ACI Struct. J., 97(4), 648-658. 
  24. Li, Y.D., Ding, Y.L., Geng, F.F. and Wang, L.B. (2019), "Seismic response of self-centering precast concrete frames with hysteretic dampers", Struct. Des. Tall Spec. Build., 28(8). https://doi.org/10.1002/tal.1604. 
  25. Lu, X.L., Dang, X.L., Qian, J., Zhou, Y. and Jiang, H.J. (2017), "Experimental study of self-centering shear walls with horizontal bottom slits", J. Struct. Eng., 143(3). https://doi.org/10.1061/(asce)st.1943-541x.0001673. 
  26. Lu, X.L., Yang, B.Y. and Zhao, B. (2018), "Shake-table testing of a self-centering precast reinforced concrete frame with shear walls", Earthq. Eng. Eng. Vib., 17(2), 221-233. https://doi.org/10.1007/s11803-018-0436-y. 
  27. Miranda, E. and Garcia, J.G. (2002), "Evaluation of approximate methods to estimate maximum inelastic displacement demands", Earthq. Eng. Struct. Dyn., 1(31), 539-560. https://doi.org/10.1002/eqe.143. 
  28. O'Reilly, G.J. and Goggins, J. (2021), "Experimental testing of a self-centring concentrically braced steel frame", Eng. Struct., 238. https://doi.org/10.1016/j.engstruct.2020.111521. 
  29. Park, R. (2000), "Seismic behaviour and design of reinforced concrete structures for earthquake resistance", Paper presented at the International Conference on Advances in Structural Dynamics (ASD 2000), Hong Kong, Peoples R China. 
  30. Paslar, N., Farzampour, A. and Hatami, F. (2020), "Infill plate interconnection effects on the structural behavior of steel plate shear walls", Thin-Wall. Struct., 149. https://doi.org/10.1016/j.tws.2020.106621. 
  31. Priestley, M.J.N. and Calvi, G.M. (2002), "Strategies for repair and seismic upgrading of Bolu Viaduct 1", Turkey. J. Earthq. Eng., 6, 157-184. https://doi.org/10.1142/s1363246902000681. 
  32. Qiu, C.X. and Du, X.L. (2021), "A state-of-the-art review on the research and application of self-centering structures", China Civil Eng. J., 54(11), 11-26. https://doi.org/10.15951/j.tmgcxb.2021.11.006. 
  33. Shahabi, S.E.M., Sulong, N.H.R. and Shariati, M. (2016), "Numerical analysis of channel connectors under fire and a comparison of performance with different types of shear connectors subjected to fire", Steel Compos. Struct., 20(3), 651-669. https://doi.org/10.12989/scs.2016.20.3.651. 
  34. Shahiditabar, A. and Moharrami, H. (2021), "Development and experimental verification of self-centered y-shaped braced frame", Structures, 34, 1312-1325. https://doi.org/10.1016/j.istruc.2021.08.046. 
  35. Shariati, M., Faegh, S.S., Mehrabi, P., Bahavarnia, S., Zandi, Y., Masoom, D.R., Salih, M.N.A. (2019), "Numerical study on the structural performance of corrugated low yield point steel plate shear walls with circular openings", Steel Compos. Struct., 33(4), 569-581. https://doi.org/10.12989/scs.2019.33.4.569. 
  36. Shariati, M., Ramli Sulong, N.H., Shariati, A. and Khanouki, M. A. (2016), "Behavior of V-shaped angle shear connectors: experimental and parametric study", Mater. Struct., 49(9), 3909-3926. https://doi.org/10.1617/s11527-015-0762-8. 
  37. Shehu, R., Angjeliu, G. and Bilgin, H. (2019), "A simple approach for the design of ductile earthquake-resisting frame structures counting for P-Delta effect", Buildings, 9(10). https://doi.org/10.3390/buildings9100216. 
  38. Sui, L, Wu, H.H. and Tao, M.L. (2023), "Seismic performance evaluation of steel moment frames with self-centering energy-dissipating coupled wall panels", Steel Compos. Struct., 47(5), 663-677. https://doi.org/10.12989/scs.2023.47.5.663. 
  39. Twigden, K.M., Sritharan, S. and Henry, R.S. (2017), "Cyclic testing of unbonded post-tensioned concrete wall systems with and without supplemental damping", Eng. Struct., 140, 406-420. https://doi.org/10.1016/j.engstruct.2017.02.008. 
  40. Wang, M. and Bi, P. (2019), "Study on seismic behavior and design method of dissipative bolted joint for steel frame with replaceable low yield point steel connected components", Construct. Build. Mater., 198, 677-695. https://doi.org/10.1016/j.conbuildmat.2018.11.255. 
  41. Wang, W., Kong, J.H., Zhang, Y.F., Chu, G.L. and Chen, Y.Y. (2018), "Seismic behavior of self-centering Modular Panel with Slit Steel Plate Shear Walls: Experimental Testing", J. Struct. Eng., 144(1). https://doi.org/10.1061/(asce)st.1943-541x.0001932. 
  42. Wu, H.H., Sui, L., Zhou, T.H., Huang, B. and Li, X.H. (2021), "A novel self-centering energy-dissipating wall panel with framed beams as boundaries", Eng. Struct., 232. https://doi.org/10.1016/j.engstruct.2021.111864. 
  43. Wu, H.H., Wang, J.Q. and Sui, L. (2020), "Experimental investigation of self-centering steel reinforced concrete coupled wall panels with replaceable energy dissipaters", Eng. Struct., 212, 110473. https://doi.org/10.1016/j.engstruct.2020.110473. 
  44. Wu, H.H., Zhou, T.H., Liao, F.F. and Lv, J. (2016), "Seismic behavior of steel frames with replaceable reinforced concrete wall panels", Steel Compos. Struct., 22(5), 1055-1071. https://doi.org/10.12989/scs.2016.22.5.1055. 
  45. Xiao, S.J., Xu, L.H. and Li, Z.X. (2020), "Development and experimental verification of self-centering shear walls with disc spring devices", Eng. Struct., 213. https://doi.org/10.1016/j.engstruct.2020.110622. 
  46. Xu, L.H., Liu, J.L. and Li, Z.X. (2021), "Parametric analysis and failure mode of steel plate shear wall with self-centering braces", Eng. Struct., 237. https://doi.org/10.1016/j.engstruct.2021.112151. 
  47. Yang, Y., Feng, S.Q., Xue, Y.C. and Yu, Y.L. (2021), "Experimental investigation on the seismic behaviour of innovative self-centring precast steel-concrete hybrid frames", Eng. Struct., 239. https://doi.org/10.1016/j.engstruct.2021.112222. 
  48. Zhao, W., Tong, G.S. and Yang, Q.Y. (2012), "Experimental study on seismic behavior of steel frame with prefabricated reinforced concrete infill slit shear walls", J. Build. Struct., 33(7), 140-146. https://doi.org/10.14006/j.jzjgxb.2012.07.017. 
  49. Zhou, T.H., Wu, H.H. and Bai, L. (2014), "Experimental study on seismic behavior of steel frame-steel reinforced concrete lateral force resisting wall fabricated structures", J. Build. Struct., 35(7), 131-137. https://doi.org/10.14006/j.jzjgxb.2014.07.016. 
  50. Zhou, Y., Wang, R. and Tian, W.B. (2022), "Force-based seismic design method for self-centering wall structures", J. Build. Struct., 43(7), 11-20. https://doi.org/10.14006/j.jzjgxb.2020.0773.