DOI QR코드

DOI QR Code

Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature

  • Mohammad Alharthai (Department of Civil Engineering, College of Engineering, Najran University) ;
  • Yasin Onuralp Ozkilic (Necmettin Erbakan University, Faculty of Engineering, Department of Civil Engineering) ;
  • Memduh Karalar (Faculty of Engineering, Department of Civil Engineering, Zonguldak Bulent Ecevit University) ;
  • Md Azree Othuman Mydin (School of Housing, Building and Planning, Universiti Sains Malaysia) ;
  • Nebi Ozdoner (Necmettin Erbakan University, Faculty of Engineering, Department of Civil Engineering) ;
  • Ali Ihsan Celik (Tomarza Mustafa Akincioglu Vocational School, Department of Construction, Kayseri University)
  • Received : 2023.10.17
  • Accepted : 2024.04.22
  • Published : 2024.05.10

Abstract

The primary objective of this study is to investigate the production and performance characteristics of structural concrete incorporating varying proportions (0%, 25%, and 50% by volume) of pumice stone, as well as aluminum lathe as an additive at 0%, 1%, 2%, and 3%, under fire conditions. The experiment will be conducted over a period of up to 1 hour, at temperatures ranging from 24℃, 200℃, 400℃ and 600℃. For the purpose of this, a total of twelve test samples were manufactured, and then tests of compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) were performed on these samples.Next, a comparison was made between the obtained values and the influence of temperature. To achieve this objective, the manufactured samples were placed at temperatures of 200℃, 400℃, and 600℃ for a duration of 1 hour, and were subjected to the influence of temperature.These values at 24 ℃ were then contrasted with the CS results obtained from test samples that were subjected to the temperature effect for an hour at 200 ℃, 400 ℃, and 600 ℃. A comprehensive analysis of the test outcomes reveals that the incorporation of aluminum lathe wastes into a mixture results in a significant reduction in the compressive strength of the concrete. As a result of this adjustment, the CS values dropped by 32.93%, 45.70%, and 52.07%, respectively. Furthermore, It was shown that testing the ratios of pumice stone alone resulted in a decrease in CS outcomes. Additionally, it was found that the presence of higher temperatures is clearly the primary factor contributing to the decrease in the strength of concrete. Due to elevated temperatures, the CS values decreased by 19.88%, 28.27%, and 38.61% respectively.After this investigation, an equation that explains the connection between CS and STS was provided through the utilization of the data of the experiments that were carried out.

Keywords

Acknowledgement

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Priorities and Najran Research funding program grant code (NU/NRP/SERC/12/1).

References

  1. Abdulazeez, A.S., Kolawole, M.A., Gabriel, U. and Justin, T. (2020), "Modifying the properties of concrete with acrylic acid using pumice aggregate as partial replacement of coarse aggregate", Int. J. Eng. Res. Tech., 379-385.
  2. Akcay, B. and Tasdemir, M.A. (2009), "Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete", Constr. Build. Mater., 23(1), 353-363. https://doi.org/10.1016/j.conbuildmat.2007.11.015.
  3. Ali, M., Abbas, S., de Azevedo, A.R.G., Marvila, M.T., Khan, M.I. and Rafiq, W. (2022), "Experimental and analytical investigation on the confinement behavior of low strength concrete under axial compression", Structures, 36, 303-313. https://doi.org/10.1016/j.istruc.2021.12.038.
  4. Ali, M., Alam, M.A., Khan, U., Ammad, S. and Saad, S. (2021), "Assessment of lightweight aggregate concrete using textile washing stone", 2021 Third International Sustainability and Resilience Conference: Climate Change.
  5. Ali, M., Kumar, A., Yvaz, A. and Salah, B. (2023), "Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM", Case Studies Construct. Mater., 18 e01958. https://doi.org/10.1016/j.cscm.2023.e01958,
  6. Ali, M., Masood, F., Khan, M.I., Azeem, M., Qasim, M. and Ali, F.N. (2021), "Evaluation of flexible pavement distresses-A case study of northern bypass peshawar, Pakistan", 2021 Third International Sustainability and Resilience Conference: Climate Change.
  7. Alqarni, A.S. (2022), "A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material", Construct. Build. Mater., 323, 126533. https://doi.org/10.1016/j.conbuildmat.2022.126533.
  8. Anwar Hossain, K.M. (2004), "Properties of volcanic pumice based cement and lightweight concrete", Cem. Concr. Res., 34(2) 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004.
  9. Bhardwaj, B. and Kumar, P. (2017), "Waste foundry sand in concrete: A review", Construct. Build. Mater., 156, 661-674. https://doi.org/10.1016/j.conbuildmat.2017.09.010.
  10. Bhavana, N. and Rambabu, C. (2017), "Study of mechanical properties of lightweight aggregate concrete by using pumice stone, ceramic tiles and CLC lightweight bricks", Int. Res. J. Eng. Technol., 4(6), 3071-3079.
  11. Bideci, A., Bideci, O.S. and Ashour, A. (2023), "Mechanical and thermal properties of lightweight concrete produced with polyester-coated pumice aggregate", Construct. Build. Mater., 394, 132204. https://doi.org/10.1016/j.conbuildmat.2023.132204.
  12. Bingol, A.F. and Gul, R. (2004), "Compressive strength of lightweight aggregate concrete exposed to high temperatures".
  13. Canbaz, M., Kara, I. and Topcu, I. (2021), "Effect of high temperature on the mechanical behavior of cement-bonded wood composite produced with wood waste", Challenge J. Struct. Mech., 7(1).
  14. Chowdhury, S., Mishra, M. and Suganya, O. (2015), "The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview", Ain Shams Eng. J., 6(2), 429-437. https://doi.org/10.1016/j.asej.2014.11.005.
  15. Cody, A.M., Lee, H., Cody, R.D. and Spry, P.G. (2004), "The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al (OH) 6] 2 (SO4) 3. 26H2O", Cement Concrete Res., 34(5), 869-881. https://doi.org/10.1016/j.cemconres.2003.10.023
  16. Concrete, A.I.C.C.o.a.C.A. (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM international.
  17. Concrete, A.S.f.T.M.C.C.-o.a.C.A. (2007), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International.
  18. de Azevedo, A.R., Marvila, M.T., Ali, M., Khan, M.I., Masood, F. and Vieira, C.M.F. (2021), "Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars", Case Studies Construct. Mater., 15, e00662. ttps://doi.org/10.1016/j.cscm.2021.e00662.
  19. Demir, T., Demirel, B. and Ozturk, M. (2024), "Valorisation of the Effect of Waste Aluminum Sawdust on Carbonation of Concrete", Available at SSRN 4229543.
  20. DEMIR, T., DEMIREL, B. and OZTuRK, M. (2024), "Valorisation of the effect of waste aluminum sawdust on concrete: Durability characteristics and environmental impacts", Black Sea J. Eng. Sci., 7(1), 109-120. https://doi.org/10.34248/bsengineering.1337117
  21. Dridi, W. (2013), "Analysis of effective diffusivity of cement based materials by multi-scale modelling", Mater. Struct., 46 (1-2), 313-326. https://doi.org/10.1617/s11527-012-9903-5
  22. Elinwa, A.U. and Mahmood, Y.A. (2002), "Ash from timber waste as cement replacement material", Cement Concrete Compos., 24(2), 219-222. https://doi.org/10.1016/S0958-9465(01)00039-7.
  23. Elseknidy, M.H., Salmiaton, A., Nor Shafizah, I. and Saad, A.H. (2020), "A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust", Sustainability. 12(21), 9230.
  24. Fang, G., Chen, J., Dong, B. and Liu, B. (2023), "Microstructure and micromechanical properties of interfacial transition zone in green recycled aggregate concrete", J. Build. Eng., 66, 105860. https://doi.org/10.1016/j.jobe.2023.105860.
  25. George, D.S. and Rajeshwari, S. (2015), "Experimental study of light weight concrete by partial replacement of coarse aggregate using pumice aggregate", Int. J. Sci. Eng. Res., 2347-3878.
  26. Hamada, H.M., Tayeh, B.A., Al-Attar, A., Yahaya, F.M., Muthusamy, K. and Humada, A.M. (2020), "The present state of the use of eggshell powder in concrete: A review", J. Build. Eng., 32, 101583. https://doi.org/10.1016/j.jobe.2020.101583.
  27. Hay, R. and Ostertag, C.P. (2019), "On utilization and mechanisms of waste aluminium in mitigating alkali-silica reaction (ASR) in concrete", J. Cleaner Product., 212, 864-879. https://doi.org/10.1016/j.jclepro.2018.11.288.
  28. He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024a), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 86, 108978. https://doi.org/10.1016/j.jobe.2024.108978.
  29. Heniegal, A.M., Maaty, A.A.S. and Al-Samahy, A.B.I. "Rehabilitation of beams made of aluminum powder and pumice stone after fire using different techniques".
  30. Heniegal, A.M., SalamMaaty, A.A. and Al-Samahy, A.B.I. "Performance evaluation of structural lightweight concrete incorporating aluminum powder andpumice in fire condition",
  31. Hesami, S., Modarres, A., Soltaninejad, M. and Madani, H. (2016), "Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement", Construct. Build. Mater., 111, 625-636. https://doi.org/10.1016/j.conbuildmat.2016.02.116.
  32. Hoff, G.C. (1996), "Fire resistance of high-strength concretes for offshore concrete platforms", Spec. Publication. 163, 53-88.
  33. Hossain, K.M.A. (2004), "Properties of volcanic pumice based cement and lightweight concrete", Cement Concrete Res., 34(2), 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004
  34. Hossain, K.M.A., Ahmed, S. and Lachemi, M. (2011), "Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics", Construct. Build. Mater., 25(3), 1186-1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036.
  35. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  36. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  37. Idi, M.A., Abdulazeez, A.S., Usman, S. and Justin, T. (2020), "Strength properties of concrete using pumice aggregate as partial replacement of coarse aggregate", Int. J. Eng. Appl. Sci. Technol., 4(11), 519-525.
  38. Ikponmwosa, E. and Ehikhuenmen, S. (2017), "The effect of ceramic waste as coarse aggregate on strength properties of concrete", Nigerian J. Technol., 36(3), 691-696. https://doi.org/10.4314/njt.v36i3.5
  39. Ismail, A.I.M., Elmaghraby, M.S. and Mekky, H.S. (2013), "Engineering properties, microstructure and strength development of lightweight concrete containing pumice aggregates", Geotech. Geologic. Eng., 31, 1465-1476. https://doi.org/10.1007/s10706-013-9671-1.
  40. Ismail, S., Hoe, K.W. and Ramli, M. (2013), "Sustainable aggregates: The potential and challenge for natural resources conservation", Procedia-Social Behavioral Sci., 101, 100-109. https://doi.org/10.1016/j.sbspro.2013.07.183.
  41. Ji, H., Yang, X., Luo, Z. and Bai, F. (2023), "Tensile fracture property of concrete affected by interfacial transition zone", Int J. Concr. Struct. Mater., 17(1), 2
  42. Karasin, A., Hadzima-Nyarko, M., Isik, E., Dogruyol, M., Karasin, I.B. and Czarnecki, S. (2022), "The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks", Materials. 15(4), 1581.
  43. Karthika, R., Vidyapriya, V., Sri, K.N., Beaula, K.M.G., Harini, R. and Sriram, M. (2021), "Experimental study on lightweight concrete using pumice aggregate", Mater. Today: Proceedings. 43, 1606-1613. https://doi.org/10.1016/j.matpr.2020.09.762
  44. Khan, M.I., Sutanto, M.H., Napiah, M.B., Zoorob, S.E., Al-Sabaeei, A.M., Rafiq, W., Ali, M. and Memon, A.M. (2021), "Investigating the mechanical properties and fuel spillage resistance of semi-flexible pavement surfacing containing irradiated waste PET based grouts", Construct. Build. Mater., 304, 124641. https://doi.org/10.1016/j.conbuildmat.2021.124641.
  45. Kilic, A. and Teymen, A. (2009), "The effects of scoria and pumice aggregates on the strengths and unit weights of lightweight concrete".
  46. Kurt, M., Gul, M.S., Gul, R., Aydin, A.C. and Kotan, T. (2016), "The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete", Construction and Building Materials. 103 36-46.
  47. Kurtoglu, A.E., Hussein, A.K., Gulsan, M.E., Altan, M.F. and Cevik, A. (2018), "Mechanical investigation and durability of HDPE-confined SCC columns exposed to severe environment", KSCE J. Civil Eng., 22, 5046-5057. https://doi.org/10.1007/s12205-017-1533-6
  48. Liu, K., Yu, R., Shui, Z., Li, X., Ling, X., He, W. and Wu, S. (2018), "Effects of pumice-based porous material on hydration characteristics and persistent shrinkage of ultra-high performance concrete (UHPC)", Materials, 12(1), 11. https://doi.org/10.3390/ma12010011.
  49. Liu, Y., Wang, B., Fan, Y., Yu, J., Shi, T., Zhou, Y. and Zhou, X. (2024a), "Effects of reactive MgO on durability and microstructure of cement-based materials: Considering carbonation and pH value", Construct. Build. Mater., 426, 136216. https://doi.org/10.1016/j.conbuildmat.2024.136216.
  50. Liu, Y., Wang, B., Qian, Z., Yu, J., Shi, T., Fan, Y. and Zhou, X. (2024b), "State-of-the art on preparation, performance, and ecological applications of planting concrete", Case Studies Construct. Mater., 20, e03131. https://doi.org/10.1016/j.cscm.2024.e03131.
  51. Long, X., Mao, M., Su, T., Su, Y. and Tian, M. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Defence Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003.
  52. Manoj, V., Sridhar, R. and Kumar, V.A. (2021). "Study on effects of pumice in high performance light weight concrete by replacing coarse aggregates", IOP Conference Series: Earth and Environmental Science.
  53. MASRESHA, T.B. (2019), "Experimental work on structural light weight concrete using pumice as partial replacement of coarse aggregate".
  54. Minapu, L.K., Ratnam, M. and Rangaraju, U. (2014), "Experimental study on light weight aggregate concrete with pumice stone, silica fume and fly ash as a partial replacement of coarse aggregate", Int. J. Innov. Res. Sci., Eng. Technol., 3(12), 18130-18138.
  55. Nafees, A., Amin, M.N., Khan, K., Nazir, K., Ali, M., Javed, M.F., Aslam, F., Musarat, M.A. and Vatin, N.I. (2021), "Modeling of mechanical properties of silica fume-based green concrete using machine learning techniques", Polymers. 14(1), 30.
  56. Naveenkumar, K., Divahar, R., Praveenkumar, J., Perumal, S. and Ashokkumar, M. (2020). "Experimental investigation of pumice stone as coarse aggregate in concrete", AIP Conference Proceedings.
  57. Oz, H.O., Yucel, H.E. and Gunes, M. (2017), "Bazik pomzanin kendiliginden yerlesen betonlarin islenebilirlik ozellikleri uzerine etkisi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi. 6(1), 90-97.
  58. Ozkilic, Y.O., Zeybek, O., Bahrami, A., Celik, A.I., Mydin, M.A. O., Karalar, M. and Jagadesh, P. (2023), "Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete", J. Mater. Res. Technol., 25, 4799-4819. https://doi.org/10.1016/j.jmrt.2023.06.126.
  59. Panditharadhya, B., Sampath, V., Mulangi, R.H. and Shankar, A.R. (2018). "Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement", IOP Conference Series: Materials Science and Engineering.
  60. Parhizkar, T., Najimi, M. and Pourkhorshidi, A.R. (2012), "Application of pumice aggregate in structural lightweight concrete".
  61. Pereira, D., de Aguiar, B., Castro, F., Almeida, M. and Labrincha, J. (2000), "Mechanical behaviour of Portland cement mortars with incorporation of Al-containing salt slags", Cement Concrete Res., 30(7), 1131-1138. https://doi.org/10.1016/S0008-8846(00)00272-6.
  62. Poupelloz, E., Gauffinet, S. and Nonat, A. (2020), "Study of nucleation and growth processes of ettringite in diluted conditions", Cement Concrete Res., 127, 105915.
  63. Prayuda, H. (2021), "Fresh and hardened properties of lightweight concrete made with pumice as coarse aggregate", Geomate J., 21(87), 110-117.
  64. Rahim, N.L., Ibrahim, N.M., Salehuddin, S., Che Amat, R., Mohammed, S.A. and Hibadullah, C.R. (2014), "The utilization of aluminum waste as sand replacement in concrete", Key Eng. Mater., 594, 455-459.
  65. Rahman, F., Adil, W., Raheel, M., Saberian, M., Li, J. and Maqsood, T. (2022), "Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study", J. Build. Eng., 49, 104037. https://doi.org/10.1016/j.jobe.2022.104037.
  66. Rashad, A.M. (2019), "A short manual on natural pumice as a lightweight aggregate", J. Build. Eng., 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802.
  67. Rashad, A.M. (2021), "An overview of pumice stone as a cementitious material-the best manual for civil engineer", Silicon. 13(2), 551-572. https://doi.org/10.1007/s12633-020-00469-3
  68. Samadi, M., Hussin, M.W., Lee, H.S., Sam, A.R.M., Ismail, M.A., Lim, N., Ariffin, N.F. and Khalid, N.H.A. (2015), "Properties of mortar containing ceramic powder waste as cement replacement", J. Teknol., 77(12), 93-97.
  69. Sangeetha, S., Divahar, R., Mawlong, K., Lyngkhoi, B. and Kurkalang, A. (2020), "Mechanical characteristics of pumice stone as light weight aggregate in concrete", Int. J. Sci. Technol. Res. 9(1), 3760-3762.
  70. Sanjayan, J.G., Nazari, A., Chen, L. and Nguyen, G.H. (2015), "Physical and mechanical properties of lightweight aerated geopolymer", Construct. Build. Mater., 79, 236-244. https://doi.org/10.1016/j.conbuildmat.2015.01.043.
  71. Shabbar, R., Nedwell, P. and Wu, Z. (2018), "Porosity and water absorption of aerated concrete with varying aluminium powder content", Int. J. Eng. Technol., 10(3), 234-238. https://doi.org/10.7763/IJET.2018.V10.1065
  72. Shafiq, M.S., Khan, F.A., Badrashi, Y.I., Khan, F.A., Fahim, M., Abbas, A. and Adil, W. (2021), "Evaluation of mechanical properties of lightweight concrete with pumice aggregate", Advances in Science and Technology", Res. J., 15(2), 30-38.
  73. Shaikh, F.A., Nath, P., Hosan, A., John, M. and Biswas, W. (2019), "Sustainability assessment of recycled aggregates concrete mixes containing industrial by-products", Mater. Today Sustainability. 5, 100013.
  74. Shideler, J.J. (1957). "Lightweight-aggregate concrete for structural use", Journal Proceedings.
  75. Steyn, Z., Babafemi, A., Fataar, H. and Combrinck, R. (2021), "Concrete containing waste recycled glass, plastic and rubber as sand replacement", Construct. Build. Mater., 269, 121242.
  76. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
  77. Taha, B. and Nounu, G. (2009), "Utilizing waste recycled glass as sand/cement replacement in concrete", J. Mater. Civil Eng., 21(12), 709-721. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(709.
  78. Tamai, H. (2015), "Enhancing the performance of porous concrete by utilizing the pumice aggregate", Procedia Eng., 125, 732-738. https://doi.org/10.1016/j.proeng.2015.11.116
  79. Tanyildizi, M. and Gokalp, I. (2023), "Utilization of pumice as aggregate in the concrete: A state of art", Construct. Build. Mater., 377, 131102. https://doi.org/10.1016/j.conbuildmat.2023.131102.
  80. Toric, N., Boko, I., Juradin, S. and Baloevic, G. (2016), "Mechanical properties of lightweight concrete after fire exposure", Struct. Concrete. 17(6), 1071-1081. https://doi.org/10.1002/suco.201500145.
  81. Torkaman, J., Ashori, A. and Momtazi, A.S. (2014), "Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks", Construct. Build. Mater., 50, 432-436. https://doi.org/10.1016/j.conbuildmat.2013.09.044
  82. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  83. Widodo, S., Satyarno, I. and Tudjono, S. (2014), "Experimental study on the potential use of pumice breccia as coarse aggregate in structural lightweight concrete", Int. J. Sustain. Construct. Eng. Technol., 5(1), 1-8.
  84. Wu, Y., Wang, X., Fan, Y., Shi, J., Luo, C. and Wang, X. (2024), "A study on the ultimate span of a concrete-filled steel tube arch bridge", Buildings, 14(4), 896. https://doi.org/10.3390/buildings14040896.
  85. Xiaopeng, L. (2005), "Structural lightweight concrete with pumice aggregate".
  86. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Construct. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
  87. Yusuf, M.O. (2023), "Performance of aluminium shaving waste and silica fume blended mortar", Mag. Civil Eng., 122(6), 100-112.
  88. Zeyad, A.M., Amin, M. and Agwa, I.S. (2023), "Effect of air entraining and pumice on properties of ultra-high performance lightweight concrete", Arch. Civil Mech. Eng., 24(1), 11.
  89. Zhang, W., Zhang, S., Wei, J. and Huang, Y. (2024), "Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study", Structures, 60, 105823. https://doi.org/10.1016/j.istruc.2023.105823.