Acknowledgement
The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Priorities and Najran Research funding program grant code (NU/NRP/SERC/12/1).
References
- Abdulazeez, A.S., Kolawole, M.A., Gabriel, U. and Justin, T. (2020), "Modifying the properties of concrete with acrylic acid using pumice aggregate as partial replacement of coarse aggregate", Int. J. Eng. Res. Tech., 379-385.
- Akcay, B. and Tasdemir, M.A. (2009), "Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete", Constr. Build. Mater., 23(1), 353-363. https://doi.org/10.1016/j.conbuildmat.2007.11.015.
- Ali, M., Abbas, S., de Azevedo, A.R.G., Marvila, M.T., Khan, M.I. and Rafiq, W. (2022), "Experimental and analytical investigation on the confinement behavior of low strength concrete under axial compression", Structures, 36, 303-313. https://doi.org/10.1016/j.istruc.2021.12.038.
- Ali, M., Alam, M.A., Khan, U., Ammad, S. and Saad, S. (2021), "Assessment of lightweight aggregate concrete using textile washing stone", 2021 Third International Sustainability and Resilience Conference: Climate Change.
- Ali, M., Kumar, A., Yvaz, A. and Salah, B. (2023), "Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM", Case Studies Construct. Mater., 18 e01958. https://doi.org/10.1016/j.cscm.2023.e01958,
- Ali, M., Masood, F., Khan, M.I., Azeem, M., Qasim, M. and Ali, F.N. (2021), "Evaluation of flexible pavement distresses-A case study of northern bypass peshawar, Pakistan", 2021 Third International Sustainability and Resilience Conference: Climate Change.
- Alqarni, A.S. (2022), "A comprehensive review on properties of sustainable concrete using volcanic pumice powder ash as a supplementary cementitious material", Construct. Build. Mater., 323, 126533. https://doi.org/10.1016/j.conbuildmat.2022.126533.
- Anwar Hossain, K.M. (2004), "Properties of volcanic pumice based cement and lightweight concrete", Cem. Concr. Res., 34(2) 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004.
- Bhardwaj, B. and Kumar, P. (2017), "Waste foundry sand in concrete: A review", Construct. Build. Mater., 156, 661-674. https://doi.org/10.1016/j.conbuildmat.2017.09.010.
- Bhavana, N. and Rambabu, C. (2017), "Study of mechanical properties of lightweight aggregate concrete by using pumice stone, ceramic tiles and CLC lightweight bricks", Int. Res. J. Eng. Technol., 4(6), 3071-3079.
- Bideci, A., Bideci, O.S. and Ashour, A. (2023), "Mechanical and thermal properties of lightweight concrete produced with polyester-coated pumice aggregate", Construct. Build. Mater., 394, 132204. https://doi.org/10.1016/j.conbuildmat.2023.132204.
- Bingol, A.F. and Gul, R. (2004), "Compressive strength of lightweight aggregate concrete exposed to high temperatures".
- Canbaz, M., Kara, I. and Topcu, I. (2021), "Effect of high temperature on the mechanical behavior of cement-bonded wood composite produced with wood waste", Challenge J. Struct. Mech., 7(1).
- Chowdhury, S., Mishra, M. and Suganya, O. (2015), "The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview", Ain Shams Eng. J., 6(2), 429-437. https://doi.org/10.1016/j.asej.2014.11.005.
- Cody, A.M., Lee, H., Cody, R.D. and Spry, P.G. (2004), "The effects of chemical environment on the nucleation, growth, and stability of ettringite [Ca3Al (OH) 6] 2 (SO4) 3. 26H2O", Cement Concrete Res., 34(5), 869-881. https://doi.org/10.1016/j.cemconres.2003.10.023
- Concrete, A.I.C.C.o.a.C.A. (2014), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM international.
- Concrete, A.S.f.T.M.C.C.-o.a.C.A. (2007), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. ASTM International.
- de Azevedo, A.R., Marvila, M.T., Ali, M., Khan, M.I., Masood, F. and Vieira, C.M.F. (2021), "Effect of the addition and processing of glass polishing waste on the durability of geopolymeric mortars", Case Studies Construct. Mater., 15, e00662. ttps://doi.org/10.1016/j.cscm.2021.e00662.
- Demir, T., Demirel, B. and Ozturk, M. (2024), "Valorisation of the Effect of Waste Aluminum Sawdust on Carbonation of Concrete", Available at SSRN 4229543.
- DEMIR, T., DEMIREL, B. and OZTuRK, M. (2024), "Valorisation of the effect of waste aluminum sawdust on concrete: Durability characteristics and environmental impacts", Black Sea J. Eng. Sci., 7(1), 109-120. https://doi.org/10.34248/bsengineering.1337117
- Dridi, W. (2013), "Analysis of effective diffusivity of cement based materials by multi-scale modelling", Mater. Struct., 46 (1-2), 313-326. https://doi.org/10.1617/s11527-012-9903-5
- Elinwa, A.U. and Mahmood, Y.A. (2002), "Ash from timber waste as cement replacement material", Cement Concrete Compos., 24(2), 219-222. https://doi.org/10.1016/S0958-9465(01)00039-7.
- Elseknidy, M.H., Salmiaton, A., Nor Shafizah, I. and Saad, A.H. (2020), "A study on mechanical properties of concrete incorporating aluminum dross, fly ash, and quarry dust", Sustainability. 12(21), 9230.
- Fang, G., Chen, J., Dong, B. and Liu, B. (2023), "Microstructure and micromechanical properties of interfacial transition zone in green recycled aggregate concrete", J. Build. Eng., 66, 105860. https://doi.org/10.1016/j.jobe.2023.105860.
- George, D.S. and Rajeshwari, S. (2015), "Experimental study of light weight concrete by partial replacement of coarse aggregate using pumice aggregate", Int. J. Sci. Eng. Res., 2347-3878.
- Hamada, H.M., Tayeh, B.A., Al-Attar, A., Yahaya, F.M., Muthusamy, K. and Humada, A.M. (2020), "The present state of the use of eggshell powder in concrete: A review", J. Build. Eng., 32, 101583. https://doi.org/10.1016/j.jobe.2020.101583.
- Hay, R. and Ostertag, C.P. (2019), "On utilization and mechanisms of waste aluminium in mitigating alkali-silica reaction (ASR) in concrete", J. Cleaner Product., 212, 864-879. https://doi.org/10.1016/j.jclepro.2018.11.288.
- He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024a), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 86, 108978. https://doi.org/10.1016/j.jobe.2024.108978.
- Heniegal, A.M., Maaty, A.A.S. and Al-Samahy, A.B.I. "Rehabilitation of beams made of aluminum powder and pumice stone after fire using different techniques".
- Heniegal, A.M., SalamMaaty, A.A. and Al-Samahy, A.B.I. "Performance evaluation of structural lightweight concrete incorporating aluminum powder andpumice in fire condition",
- Hesami, S., Modarres, A., Soltaninejad, M. and Madani, H. (2016), "Mechanical properties of roller compacted concrete pavement containing coal waste and limestone powder as partial replacements of cement", Construct. Build. Mater., 111, 625-636. https://doi.org/10.1016/j.conbuildmat.2016.02.116.
- Hoff, G.C. (1996), "Fire resistance of high-strength concretes for offshore concrete platforms", Spec. Publication. 163, 53-88.
- Hossain, K.M.A. (2004), "Properties of volcanic pumice based cement and lightweight concrete", Cement Concrete Res., 34(2), 283-291. https://doi.org/10.1016/j.cemconres.2003.08.004
- Hossain, K.M.A., Ahmed, S. and Lachemi, M. (2011), "Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics", Construct. Build. Mater., 25(3), 1186-1195. https://doi.org/10.1016/j.conbuildmat.2010.09.036.
- Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
- Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
- Idi, M.A., Abdulazeez, A.S., Usman, S. and Justin, T. (2020), "Strength properties of concrete using pumice aggregate as partial replacement of coarse aggregate", Int. J. Eng. Appl. Sci. Technol., 4(11), 519-525.
- Ikponmwosa, E. and Ehikhuenmen, S. (2017), "The effect of ceramic waste as coarse aggregate on strength properties of concrete", Nigerian J. Technol., 36(3), 691-696. https://doi.org/10.4314/njt.v36i3.5
- Ismail, A.I.M., Elmaghraby, M.S. and Mekky, H.S. (2013), "Engineering properties, microstructure and strength development of lightweight concrete containing pumice aggregates", Geotech. Geologic. Eng., 31, 1465-1476. https://doi.org/10.1007/s10706-013-9671-1.
- Ismail, S., Hoe, K.W. and Ramli, M. (2013), "Sustainable aggregates: The potential and challenge for natural resources conservation", Procedia-Social Behavioral Sci., 101, 100-109. https://doi.org/10.1016/j.sbspro.2013.07.183.
- Ji, H., Yang, X., Luo, Z. and Bai, F. (2023), "Tensile fracture property of concrete affected by interfacial transition zone", Int J. Concr. Struct. Mater., 17(1), 2
- Karasin, A., Hadzima-Nyarko, M., Isik, E., Dogruyol, M., Karasin, I.B. and Czarnecki, S. (2022), "The effect of basalt aggregates and mineral admixtures on the mechanical properties of concrete exposed to sulphate attacks", Materials. 15(4), 1581.
- Karthika, R., Vidyapriya, V., Sri, K.N., Beaula, K.M.G., Harini, R. and Sriram, M. (2021), "Experimental study on lightweight concrete using pumice aggregate", Mater. Today: Proceedings. 43, 1606-1613. https://doi.org/10.1016/j.matpr.2020.09.762
- Khan, M.I., Sutanto, M.H., Napiah, M.B., Zoorob, S.E., Al-Sabaeei, A.M., Rafiq, W., Ali, M. and Memon, A.M. (2021), "Investigating the mechanical properties and fuel spillage resistance of semi-flexible pavement surfacing containing irradiated waste PET based grouts", Construct. Build. Mater., 304, 124641. https://doi.org/10.1016/j.conbuildmat.2021.124641.
- Kilic, A. and Teymen, A. (2009), "The effects of scoria and pumice aggregates on the strengths and unit weights of lightweight concrete".
- Kurt, M., Gul, M.S., Gul, R., Aydin, A.C. and Kotan, T. (2016), "The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete", Construction and Building Materials. 103 36-46.
- Kurtoglu, A.E., Hussein, A.K., Gulsan, M.E., Altan, M.F. and Cevik, A. (2018), "Mechanical investigation and durability of HDPE-confined SCC columns exposed to severe environment", KSCE J. Civil Eng., 22, 5046-5057. https://doi.org/10.1007/s12205-017-1533-6
- Liu, K., Yu, R., Shui, Z., Li, X., Ling, X., He, W. and Wu, S. (2018), "Effects of pumice-based porous material on hydration characteristics and persistent shrinkage of ultra-high performance concrete (UHPC)", Materials, 12(1), 11. https://doi.org/10.3390/ma12010011.
- Liu, Y., Wang, B., Fan, Y., Yu, J., Shi, T., Zhou, Y. and Zhou, X. (2024a), "Effects of reactive MgO on durability and microstructure of cement-based materials: Considering carbonation and pH value", Construct. Build. Mater., 426, 136216. https://doi.org/10.1016/j.conbuildmat.2024.136216.
- Liu, Y., Wang, B., Qian, Z., Yu, J., Shi, T., Fan, Y. and Zhou, X. (2024b), "State-of-the art on preparation, performance, and ecological applications of planting concrete", Case Studies Construct. Mater., 20, e03131. https://doi.org/10.1016/j.cscm.2024.e03131.
- Long, X., Mao, M., Su, T., Su, Y. and Tian, M. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Defence Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003.
- Manoj, V., Sridhar, R. and Kumar, V.A. (2021). "Study on effects of pumice in high performance light weight concrete by replacing coarse aggregates", IOP Conference Series: Earth and Environmental Science.
- MASRESHA, T.B. (2019), "Experimental work on structural light weight concrete using pumice as partial replacement of coarse aggregate".
- Minapu, L.K., Ratnam, M. and Rangaraju, U. (2014), "Experimental study on light weight aggregate concrete with pumice stone, silica fume and fly ash as a partial replacement of coarse aggregate", Int. J. Innov. Res. Sci., Eng. Technol., 3(12), 18130-18138.
- Nafees, A., Amin, M.N., Khan, K., Nazir, K., Ali, M., Javed, M.F., Aslam, F., Musarat, M.A. and Vatin, N.I. (2021), "Modeling of mechanical properties of silica fume-based green concrete using machine learning techniques", Polymers. 14(1), 30.
- Naveenkumar, K., Divahar, R., Praveenkumar, J., Perumal, S. and Ashokkumar, M. (2020). "Experimental investigation of pumice stone as coarse aggregate in concrete", AIP Conference Proceedings.
- Oz, H.O., Yucel, H.E. and Gunes, M. (2017), "Bazik pomzanin kendiliginden yerlesen betonlarin islenebilirlik ozellikleri uzerine etkisi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi. 6(1), 90-97.
- Ozkilic, Y.O., Zeybek, O., Bahrami, A., Celik, A.I., Mydin, M.A. O., Karalar, M. and Jagadesh, P. (2023), "Optimum usage of waste marble powder to reduce use of cement toward eco-friendly concrete", J. Mater. Res. Technol., 25, 4799-4819. https://doi.org/10.1016/j.jmrt.2023.06.126.
- Panditharadhya, B., Sampath, V., Mulangi, R.H. and Shankar, A.R. (2018). "Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement", IOP Conference Series: Materials Science and Engineering.
- Parhizkar, T., Najimi, M. and Pourkhorshidi, A.R. (2012), "Application of pumice aggregate in structural lightweight concrete".
- Pereira, D., de Aguiar, B., Castro, F., Almeida, M. and Labrincha, J. (2000), "Mechanical behaviour of Portland cement mortars with incorporation of Al-containing salt slags", Cement Concrete Res., 30(7), 1131-1138. https://doi.org/10.1016/S0008-8846(00)00272-6.
- Poupelloz, E., Gauffinet, S. and Nonat, A. (2020), "Study of nucleation and growth processes of ettringite in diluted conditions", Cement Concrete Res., 127, 105915.
- Prayuda, H. (2021), "Fresh and hardened properties of lightweight concrete made with pumice as coarse aggregate", Geomate J., 21(87), 110-117.
- Rahim, N.L., Ibrahim, N.M., Salehuddin, S., Che Amat, R., Mohammed, S.A. and Hibadullah, C.R. (2014), "The utilization of aluminum waste as sand replacement in concrete", Key Eng. Mater., 594, 455-459.
- Rahman, F., Adil, W., Raheel, M., Saberian, M., Li, J. and Maqsood, T. (2022), "Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study", J. Build. Eng., 49, 104037. https://doi.org/10.1016/j.jobe.2022.104037.
- Rashad, A.M. (2019), "A short manual on natural pumice as a lightweight aggregate", J. Build. Eng., 25, 100802. https://doi.org/10.1016/j.jobe.2019.100802.
- Rashad, A.M. (2021), "An overview of pumice stone as a cementitious material-the best manual for civil engineer", Silicon. 13(2), 551-572. https://doi.org/10.1007/s12633-020-00469-3
- Samadi, M., Hussin, M.W., Lee, H.S., Sam, A.R.M., Ismail, M.A., Lim, N., Ariffin, N.F. and Khalid, N.H.A. (2015), "Properties of mortar containing ceramic powder waste as cement replacement", J. Teknol., 77(12), 93-97.
- Sangeetha, S., Divahar, R., Mawlong, K., Lyngkhoi, B. and Kurkalang, A. (2020), "Mechanical characteristics of pumice stone as light weight aggregate in concrete", Int. J. Sci. Technol. Res. 9(1), 3760-3762.
- Sanjayan, J.G., Nazari, A., Chen, L. and Nguyen, G.H. (2015), "Physical and mechanical properties of lightweight aerated geopolymer", Construct. Build. Mater., 79, 236-244. https://doi.org/10.1016/j.conbuildmat.2015.01.043.
- Shabbar, R., Nedwell, P. and Wu, Z. (2018), "Porosity and water absorption of aerated concrete with varying aluminium powder content", Int. J. Eng. Technol., 10(3), 234-238. https://doi.org/10.7763/IJET.2018.V10.1065
- Shafiq, M.S., Khan, F.A., Badrashi, Y.I., Khan, F.A., Fahim, M., Abbas, A. and Adil, W. (2021), "Evaluation of mechanical properties of lightweight concrete with pumice aggregate", Advances in Science and Technology", Res. J., 15(2), 30-38.
- Shaikh, F.A., Nath, P., Hosan, A., John, M. and Biswas, W. (2019), "Sustainability assessment of recycled aggregates concrete mixes containing industrial by-products", Mater. Today Sustainability. 5, 100013.
- Shideler, J.J. (1957). "Lightweight-aggregate concrete for structural use", Journal Proceedings.
- Steyn, Z., Babafemi, A., Fataar, H. and Combrinck, R. (2021), "Concrete containing waste recycled glass, plastic and rubber as sand replacement", Construct. Build. Mater., 269, 121242.
- Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
- Taha, B. and Nounu, G. (2009), "Utilizing waste recycled glass as sand/cement replacement in concrete", J. Mater. Civil Eng., 21(12), 709-721. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(709.
- Tamai, H. (2015), "Enhancing the performance of porous concrete by utilizing the pumice aggregate", Procedia Eng., 125, 732-738. https://doi.org/10.1016/j.proeng.2015.11.116
- Tanyildizi, M. and Gokalp, I. (2023), "Utilization of pumice as aggregate in the concrete: A state of art", Construct. Build. Mater., 377, 131102. https://doi.org/10.1016/j.conbuildmat.2023.131102.
- Toric, N., Boko, I., Juradin, S. and Baloevic, G. (2016), "Mechanical properties of lightweight concrete after fire exposure", Struct. Concrete. 17(6), 1071-1081. https://doi.org/10.1002/suco.201500145.
- Torkaman, J., Ashori, A. and Momtazi, A.S. (2014), "Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks", Construct. Build. Mater., 50, 432-436. https://doi.org/10.1016/j.conbuildmat.2013.09.044
- Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
- Widodo, S., Satyarno, I. and Tudjono, S. (2014), "Experimental study on the potential use of pumice breccia as coarse aggregate in structural lightweight concrete", Int. J. Sustain. Construct. Eng. Technol., 5(1), 1-8.
- Wu, Y., Wang, X., Fan, Y., Shi, J., Luo, C. and Wang, X. (2024), "A study on the ultimate span of a concrete-filled steel tube arch bridge", Buildings, 14(4), 896. https://doi.org/10.3390/buildings14040896.
- Xiaopeng, L. (2005), "Structural lightweight concrete with pumice aggregate".
- Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M. and Wang, X. (2023), "AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition", Construct. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
- Yusuf, M.O. (2023), "Performance of aluminium shaving waste and silica fume blended mortar", Mag. Civil Eng., 122(6), 100-112.
- Zeyad, A.M., Amin, M. and Agwa, I.S. (2023), "Effect of air entraining and pumice on properties of ultra-high performance lightweight concrete", Arch. Civil Mech. Eng., 24(1), 11.
- Zhang, W., Zhang, S., Wei, J. and Huang, Y. (2024), "Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study", Structures, 60, 105823. https://doi.org/10.1016/j.istruc.2023.105823.