References
- Architectural Institute of Japan (2016), AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Build. Architectural Institute of Japan, Tokyo.
- Baker, C.J. (2000), "Aspects of the use of proper orthogonal decomposition of surface pressure fields", Wind Struct., 3, 97-115. https://doi.org/10.12989/was.2000.3.2.097
- Bendat, J.S. and Piersol, A.G. (2010), Random data : analysis and measurement procedures. John Wiley & Sons, Ltd, Hoboken.
- Bhatt, R. and Alam, M.M. (2018), "Vibrations of a square cylinder submerged in a wake", J. Fluid Mech., 853, 301-332. https://doi.org/10.1017/jfm.2018.573
- Bienkiewicz, B. (1996), "New tools in wind engineering", J. Wind Eng. Ind. Aerod., 65, 279-300. https://doi.org/10.1016/S0167-6105(97)00047-0.
- Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E. and Nathan Kutz, J. (2017), "Chaos as an intermittently forced linear system", Nat. Commun. 8, 1-9. https://doi.org/10.1038/s41467-017-00030-8.
- Brunton, S.L., Proctor, J.L., Kutz, J.N. and Bialek, W. (2016), "Discovering governing equations from data by sparse identification of nonlinear dynamical systems", Proc. Natl. Acad. Sci., 113, 3932-3937. https://doi.org/10.1073/pnas.1517384113.
- Cantwell, B.J. (1981), "Organized motion in turbulent flow", Annu. Rev. Fluid Mech., 13, 457-515. https://doi.org/10.1146/annurev.fl.13.010181.002325.
- Carassale, L. and Brunenghi, M.M. (2011), "Statistical analysis of wind-induced pressure fields: A methodological perspective", J. Wind Eng. Ind. Aerod., 99, 700-710. https://doi.org/10.1016/j.jweia.2011.03.011
- Carter, G.C., Knapp, C.H. and Nuttall, A.H. (1973), "Estimation of the magnitude-squared coherence function via overlapped fast fourier transform processing", IEEE Trans. Audio Electroacoust. 21, 337-344. https://doi.org/10.1109/TAU.1973.1162496
- Cheng, L., Lam, K.M. and Wong, S.Y. (2015), "POD analysis of crosswind forces on a tall building with square and H-shaped cross sections", Wind Struct., 21, 63-84. https://doi.org/10.12989/was.2015.21.1.063
- Clough, R.W. and Penzien, J. (2010), Dynamics of Structures, Computers and Structures, Berkeley.
- Crivellini, A., Nigro, A., Colombo, A., Ghidoni, A., Noventa, G., Cimarelli, A. and Corsini, R. (2022), "Implicit large eddy simulations of a rectangular 5: 1 cylinder with a high-order discontinuous Galerkin method", Wind Struct., 34(1), 59-72.
- Galletti, B., Bruneau, C.H., Zannetti, L. and Iollo, A. (2004), "Low-order modelling of laminar flow regimes past a confined square cylinder", J. Fluid Mech., 503, 161-170. https://doi.org/10.1017/S0022112004007906.
- Gao, D., Chen, G., Min, X. and Chen, W. (2022), "Wake-vortex evolution behind a fixed circular cylinder with symmetric jets", Exp. Therm. Fluid Sci., 135, 110629.
- Guissart, A., Elbaek, E. and Hussong, J. (2022), "PIV study of the flow around a 5: 1 rectangular cylinder at moderate Reynolds numbers and small incidence angles", Wind Struct., 34(1), 15-27.
- Hasegawa, K., Fukami, K., Murata, T. and Fukagata, K. (2020), "Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes", Theoretic. Comput. Fluid Dyn., 34, 367-383. https://doi.org/10.1007/s00162-020-00528-w
- Ikegaya, N., Okaze, T., Kikumoto, H., Imano, M., Ono, H. and Tominaga, Y. (2019), "Effect of the numerical viscosity on reproduction of mean and turbulent flow fields in the case of a 1:1:2 single block model", J. Wind Eng. Ind. Aerod., 191, 279-296. https://doi.org/10.1016/j.jweia.2019.06.013.
- Kikitsu, H., Okuda, Y., Ohashi, M. and Kanda, J. (2008), "POD analysis of wind velocity field in the wake region behind vibrating three-dimensional square prism", J. Wind Eng. Ind. Aerod., 96(10-11), 2093-2103. https://doi.org/10.1016/j.jweia.2008.02.057
- Kikumoto, H., Ooka, R., Han, M. and Nakajima, K. (2018), "Consistency of mean wind speed in pedestrian wind environment analyses: Mathematical consideration and a case study using large-eddy simulation", J. Wind Eng. Ind. Aerod., 173. https://doi.org/https://doi.org/10.1016/j.jweia.2017.11.021
- Lakshmanan, M. and Rajasekar, S. (2003), Nonlinear dynamics : Integrability, chaos and patterns. Springer Berlin Heidelberg.
- Lam, K.M., Leung, M.Y.H. and Zhao, J.G. (2008), "Interference effects on wind loading of a row of closely spaced tall buildings", J. Wind Eng. Ind. Aerod., 96, 562-583. https://doi.org/10.1016/j.jweia.2008.01.010
- Li, C.Y., Lin, X., Hu, G., Zhou, L., Tse, T.K., and Fu, Y. (2023), "Applied Koopmanistic interpretation of subcritical prism wake physics using the dynamic mode decomposition", Wind Struct., 37(3), 191-209.
- Liu, Z., Zhou, L., Tang, H., Wang, Z., Zhao, F., Ji, X. and Zhang, H. (2024), "Primary instability, sensitivity and active control of flow past two tandem circular cylinders", Ocean Eng., 294, 116863.
- Loiseau, J.C. and Brunton, S.L. (2018), "Constrained sparse Galerkin regression", J. Fluid Mech., 838, 42-67. https://doi.org/10.1017/jfm.2017.823
- Lumley, J.L. (1967), "The structure of inhomogeneous turbulent flows", Atmos. Turbul. Wave Propag., 166-178.
- Lumley, J.L. (1970), Stochastic Tools in Turbulence. Academic Press.
- Lusch, B., Kutz, J.N. and Brunton, S.L. (2018), "Deep learning for universal linear embeddings of nonlinear dynamics", Nat. Commun. 9, 1-10. https://doi.org/10.1038/s41467-018-07210-0.
- Ma, T. and Feng, C. (2022), "Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks", Wind Struct, 34(4), 355-369.
- Meng, Y. and Hibi, K. (1998), "Turbulent measurements of the flow field around a high-rise building", Wind Eng. JAWE, 1998, 55-64. https://doi.org/10.5359/jawe.1998.76_55.
- Noack, B.R., Afanasiev, K., Morzynski, M., Tadmor, G. and Thiele, F. (2003), "A hierarchy of low-dimensional models for the transient and post-transient cylinder wake", J. Fluid Mech. 497, 335-363. https://doi.org/10.1017/S0022112003006694.
- Oberleithner, K., Rukes, L. and Soria, J. (2014), "Mean flow stability analysis of oscillating jet experiments", J. Fluid Mech. 757, 1-32. https://doi.org/10.1017/jfm.2014.472.
- Okaze, T., Kikumoto, H., Ono, H., Imano, M., Hasama, T., Kishida, T., Nakao, K., Ikegaya, N., Tabata, Y. and Tominaga, Y. (2017), "Large-eddy simulations of flow around a high-rise building: validation and sensitivity analysis on turbulent statistics", 7th European and African Conference on Wind Engineering. Liege, Belgium.
- Pant, P., Doshi, R., Bahl, P. and Barati Farimani, A. (2021), "Deep learning for reduced order modelling and efficient temporal evolution of fluid simulations", Phys. Fluids, 33(10).
- Priestley, M.B. (1967), "Power spectral analysis of non-stationary random processes", J. Sound Vib. 6, 86-97. https://doi.org/10.1016/0022-460X(67)90160-5.
- Rowley, C.W., Mezi, I., Bagheri, S., Schlatter, P. and Henningson, D.S. (2009), "Spectral analysis of nonlinear flows", J. Fluid Mech., 641, 115-127. https://doi.org/10.1017/S0022112009992059.
- Sakamoto, H. and Arie, M. (1983), "Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer", J. Fluid Mech., 126, 147-165. https://doi.org/10.1017/S0022112083000087.
- San, O. and Maulik, R. (2018), "Extreme learning machine for reduced order modeling of turbulent geophysical flows", Phys. Rev. E., 97(4), 042322.
- Schmid, P.J. (2010), "Dynamic mode decomposition of numerical and experimental data", J. Fluid Mech., 656, 5-28. https://doi.org/10.1017/S0022112010001217.
- Sieber, M., Paschereit, C.O. and Oberleithner, K. (2016), "Spectral proper orthogonal decomposition", J. Fluid Mech., 792, 798-828. https://doi.org/10.1017/jfm.2016.103.
- Sirisup, S. and Karniadakis, G.E. (2004), "A spectral viscosity method for correcting the long-term behavior of POD models", J. Comput. Phys. 194, 92-116. https://doi.org/10.1016/j.jcp.2003.08.021
- Sirovich, L. (1987), "Turbulence and the dynamics of coherent structures", I. Coherent Struct. Q. Appl. Math., 45, 561-571. https://doi.org/10.1090/qam/910462
- Solari, G., Carassale, L. and Tubino, F. (2007), "Proper orthogonal decomposition in wind engineering - Part 1: A state-of-the-art and some prospects", Wind Struct., 10(2), 153-176. https://doi.org/10.12989/was.2007.10.2.153.
- Strogatz, S.H. (2014), Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press.
- Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of ran-dom wind pressure field", J. Fluids Struct., 13, 1069-1095. https://doi.org/10.1006/jfls.1999.0242
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96, 1749-1761. https://doi.org/10.1016/J.JWEIA.2008.02.058.
- Towne, A., Schmidt, O.T. and Colonius, T. (2018), "Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis", J. Fluid Mech., 847, 821-867. https://doi.org/10.1017/jfm.2018.283.
- Uehara, K., Wakamatsu, S. and Ooka, R. (2003), "Studies on critical Reynolds number indices for wind-tunnel experiments on flow within urban areas", Bound. Layer Meteorol., 107, 353-370. https://doi.org/10.1023/A:1022162807729.
- Versteeg, H.K. and Malalasekera, W. (2007), An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, Essex, England.
- Wang, F. and Lam, K.M. (2019), "Geometry effects on mean wake topology and large-scale coherent structures of wall-mounted prisms", Phys. Fluids, 31, 125109. https://doi.org/10.1063/1.5126045.
- Wang, L., Wang, Y., Li, Z. and Zhang, Y. (2010), "Estimation of the vortex shedding frequency of a 2-D building using correlation and the POD methods", J. Wind Eng. Ind. Aerod., 98(12), 895-902. https://doi.org/10.1016/j.jweia.2010.08.006
- Wu, J., Wang, J., Xiao, H. and Ling, J. (2017), "Visualization of high dimensional turbulence simulation data using t-SNE", In: 19th AIAA Non-Deterministic Approaches Conference, 2017. American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2017-1770.
- Yoshie, R., Mochida, A., Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T. and Shirasawa, T. (2007), "Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan", J. Wind Eng. Ind. Aerod., 95, 1551-1578. https://doi.org/10.1016/J.JWEIA.2007.02.023.
- Zhang, H., Zhang, H., Xin, D., Zhan, J., Wang, R. and Zhou, L. (2022c), "Vortex-induced vibration control of a streamline box girder using the wake perturbation of horizontal axis micro-wind turbines", J. Fluids Struct., 108, 103444.
- Zhang, H., Zhou, L. and Tse, K.T. (2022a), "Mode-based energy transfer analysis of flow-induced vibration of two rigidly coupled tandem cylinders", Int. J. Mech. Sci., 228, 107468.
- Zhang, H., Zhou, L., Deng, P. and Tse, T.K. (2022d), "Fluid-structure-coupled Koopman mode analysis of free oscillating twin-cylinders", Phys. Fluids, 34(9).
- Zhang, H., Zhou, L., Liu, T., Guo, Z. and Golnary, F. (2022b), "Dynamic mode decomposition analysis of the two-dimensional flow past two transversely in-phase oscillating cylinders in a tandem arrangement", Phys. Fluids, 34, 33602.
- Zhou, L., Tse, K.T. and Hu, G. (2022), "Aerodynamic correlation and flow pattern of high-rise building with side ratio of 3:1 under twisted wind profile: A computational study", J. Wind Eng. Ind. Aerod., 228, 105087.
- Zhou, L., Zhu, Q., Tse, K. T., Ning, X., Ai, Y., & Zhang, H. 2024. Flow pattern-and forces-susceptibility to small attack angles for a rectangular cylinder. Ocean Eng. 300, 117376.
- Zhu, Q., Zhou, L., Wen, J., Liu, T., Zhang, J., Tang, H. and Zhang, H. (2023), "Laminar flow over a rectangular cylinder experiencing torsional flutter: Dynamic response, forces and coherence modes", Phys. Fluids, 35(9).
- Zhu, Q., Zhou, L., Zhang, H., Tse, K.T., Tang, H. and Noack, B.R. (2024), "A zero-net-mass-flux wake stabilization method for blunt bodies via global linear instability", Phys. Fluids, 36(4).
- Zu, G.B. and Lam, K.M. (2018a), "Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement", Wind Struct., 26, 397-413.