과제정보
논문은 국토교통부의 재원으로 국토교통부 출연사업인 "24 건설기술정보시스템 DB 확충 및 유지보수" 과제의 지원을 받아 수행되었음.
참고문헌
- Bae, Yu-Jin & Chung, Jae-Woo (2017). Forecasting demand variability of liquefied natural gas: focused on household demand. Journal of Business Research, 32(3), 239-259. http://dx.doi.org/10.22903/jbr.2017.32.3.239
- Chang, Cheol-Won (2023). Probability Statistics Learned Through Monte Carlo Simulation With Python. Seoul: bjpublic.
- Construction Technology Digital Library (2024. April 15). Available: http://www.codil.or.kr
- Jeong, Seong-Yun & Kim, Jin-Uk (2022). Analysis on the characteristics of construction practice information using text mining: focusing on information such as construction technology, vases, and cost reduction. Journal of the Korea for Library and Information Science, 56(4), 205-222. http://dx.doi.org/10.4275/KSLIS.2022.56.4.205
- Jeong, Seong-Yun & Kim, Jin-Uk (2023). A study on the setting of construction technology information service performance targets using time series analysis. Journal of the Korea Academia-Industrial cooperation Society, 24(12), 862-870. https://doi.org/10.5762/KAIS.2023.24.12.861
- Jeong, Seong-Yun & Kim, Ji-Pyo (2014). Economic evaluation of national highway construction projects using real option pricing models. International Journal of Highway Engineering, 16(1), 75-89. https://doi.org/10.7855/IJHE.2014.16.1.075
- Lee, Yong-Taek & Nam, Doo-Hee (2005). Efficiency plan for transportation investment project evaluation using risk analysis. Transportation Technology and Policy, 2(4), 132-151.
- Min, Jae-Hyeong (2018). Monte Carlo Simulation. 28-257, Gyeonggido: iretech.
- Yoon, Hyun-Suk (2012). A Study on the Economic Evaluation of Metropolitan Area Bus Information Management System by Using Probabilistic Simulation. Doctoral dissertation, Yeungnam University, Korea. Available: http://www.riss.kr/link?id=T13170103&outLink=K
- Anas, A. M. S., Hartini, A., Faisal, Z., & Faruq, M. A. (2018). Relationships between system quality, service quality, and customer satisfaction: m-commerce in the Jordanian context. Journal of Systems and Information Technology, 20(1), 73-102. https://doi.org/10.1108/JSIT-03-2017-0016
- Angelo, Z. (2010). A statistical model for the analysis of customer satisfaction: Some theoretical and simulation results. Total Quality Managemen, 9(7), 599-609. https://doi.org/10.1080/0954412988299
- Bi, Y. N., Wang, N. K., & Guo, H. Y. (2022). The Application of monte marlo method in mystem maturity assessment. Proceedings of the 11th International Conference on Information Communication and Applications (ICICA), 24-26. https://doi.org/10.1109/ICICA56942.2022.00008
- Garcia, N. (2011). Using Simulation Models to Evaluate the Impact of Information System Design Effectiveness on Operational Availability. Available at SSRN 2813211. http://dx.doi.org/10.2139/ssrn.2813211
- Goel, L., Liang, X., & Ou, Y. (1999). Monte Carlo simulation-based customer service reliability assessment. Electric Power Systems Research, 49(3), 185-194. https://doi.org/10.1016/S0378-7796(98)00121-7
- Hossein, N. & Mohammad, K. A. (2016). Impact of service quality on user satisfaction: modeling and estimating distribution of quality of experience using Bayesian data analysis. Electronic Commerce Research and Applications, 17, 112-122. https://doi.org/10.1016/j.elerap.2016.04.001
- Lee, K. C. & Chung, N. (2011). Integration of causal map and monte carlo simulation to predict the performance of the Korea e-procurement system. In N. T. Nguyen, B. Trawinski, & J. Jung eds. New Challenges for Intelligent Information and Database Systems. Studies in Computational Intelligence, 351. Berlin, Heidelberg: Springer, 299-308. https://doi.org/10.1007/978-3-642-19953-0_30
- Pakash, A., Jha, S. K., & Prasad, M. R. (2012). Scenario planning for service quality: a Monte Carlo simulation study. Journal of Strategy and Management, 5(3), 331-352. https://doi.org/10.1108/17554251211247599
- Santos, C. P. & Esteves, S. (2007). The Choice between a fivepoint and a ten-point scale in the framework of customer satisfaction measurement. International Journal of Market Research, 49(3), 313-339. https://doi.org/10.1177/147078530704900305
- Walkowiak, T., Mazurkiewicz, J., & Nowak, K. (2012). Fuzzy availability analysis of web systems by Monte-Carlo simulation. In Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L. A., Zurada, J. M. eds. Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science, 7268. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29350-4_73
- Wang, Y., Lo, H. P., & Yang, Y. (2004). An integrated framework for service quality, customer value, satisfaction: evidence from China's telecommunication industry. Information Systems Frontiers, 6, 325-340. https://doi.org/10.1023/B:ISFI.0000046375.72726.67
- Weihua, Y. & Cong, T. (2012). Monte-Carlo simulation of information system project performance. Systems Engineering Procedia, 3, 340-345. https://doi.org/10.1016/j.sepro.2011.11.039