DOI QR코드

DOI QR Code

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2024.01.24
  • Accepted : 2024.05.10
  • Published : 2024.06.10

Abstract

Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

Keywords

References

  1. Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindricalcavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
  2. Abo-Dahab, S.M., Abd-Alla, A.M. and Mahmoud, S.R. (2013), "Effects of voids and rotation on plane waves in generalized thermoelasticity", Appl. Math. Comput., 27(12), 3607-3614. https://doi.org/10.1007/s12206-013-0903-3.
  3. Abouelregal, A.E. (2011), "Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model", Int. J. Eng. Sci., 49(8), 781-791. https://doi.org/10.1016/j.ijengsci.2011.03.007.
  4. Abouelregal, A.E. and Zenkour, A. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838. https://doi.org/10.15632/jtam-pl.54.3.827.
  5. Ailawalia, P. and Singla, A. (2015), "Disturbance due to internal heat source in thermoelastic solid using dual phase lag model", Struct. Eng. Mech., 56(3), 341-354. https://doi.org/10.12989/sem.2015.56.3.341.
  6. Alharbi, A.M., Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2022), "Fiber-reinforced micropolar thermoelastic rotating solid with voids and two-temperature in the context of memory-dependent derivative", Geomech. Eng., 28(4), 347-358. https://doi.org/10.12989/gae.2022.28.4.347.
  7. Al-Nimr, M.A. and Al-Huniti, N.S. (2000), "Transient thermal stresses in a thin elastic plate due to a rapid dual-phase-lag heating", J. Therm. Stress., 23(8), 731-746. https://doi.org/10.1080/01495730050192383.
  8. Barak, M.S. and Dhankhar, P. (2022), "Effect of inclined load on a functionally graded fiber-reinforced thermoelastic medium with temperature-dependent properties", Acta Mechanica, 233(9), 3645-3662. https://doi.org/10.1007/s00707-022-03293-5.
  9. Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
  10. Chadwick, P. (1960), Thermoelasticity, The Dynamical Theory, Progress in Solid Mechanics, 1(263-328), 4.
  11. Chand, D., Sharma, J.N. and Sud, S.P. (1990), "Transient generalized magneto-thermoelastic waves in a rotating half space", Int. J. Eng. Sci., 28(6), 547-556. https://doi.org/10.1016/0020-7225(90)90057-P.
  12. Chen, J.K., Beraun, J.E. and Tzou, D.Y. (2002), "Thermomechanical response of metals heated by ultrashort-pulsed lasers", J. Therm. Stress., 25(6), 539-558. https://doi.org/10.1080/01495730290074289.
  13. Chirita, S. (2017), "On the time differential dual-phase-lag thermoelastic model", Meccanica, 52(1), 349-361. https://doi.org/10.1007/s11012-016-0414-2.
  14. Deswal, S., Poonia, R. and Kalkal, K.K. (2020), "Disturbances in an initially stressed fiber-reinforced orthotropic thermoelastic medium due to inclined load", J. Brazil Soc. Mech. Sci. Eng., 42, 1-15. https://doi.org/10.1007/s40430-020-02338-x.
  15. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
  16. Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(3), 1-7. https://doi.org/10.1007/BF00045689.
  17. Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stress-Advanced Theory and Applications, Springer Science Business Media, B.V., New York.
  18. Kaur, I., Parveen, L. and Kulvinder, S. (2021), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature", Part. Differ. Eq. Appl. Math., 4, 100049. https://doi.org/10.1016/j.padiff.2021.100049.
  19. Kaur, I., Singh, K. and Craciun, E.M. (2022), "A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore-Gibson-thompson heat transfer under the hall effect", Math., 10(14), 2386. https://doi.org/10.3390/math10142386.
  20. Kumar, R. and Aliwalia, P. (2007), "Interactions due to time harmonic inclined load in micropolar thermoelastic medium possesing cubic symmetry without energy dissipation", Sci. Eng. Compos. Mater., 14(3), 229-240. https://doi.org/10.6180/jase.2010.13.2.01.
  21. Kumar, R. and Gupta, R.R. (2010), "Deformation due to inclined load in an orthotropic micropolar thermoelastic medium with two relaxation time", Int. J. Appl. Math. Inform. Sci., 4(3), 413-428.
  22. Lata, P. and Himanshi. (2022a), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529.
  23. Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12289/sem.2019.70.2.245.
  24. Lata, P. and Singh, S. (2021), "Effects due to two temperature and hall current in a nonlocal isotropic magneto-thermoelastic solid with memory dependent derivatives", Coupl. Syse. Mech., 10(4), 351-369. https://doi.org/10.12989/csm.2021.10.4.351.
  25. Lata, P. and Singh, S. (2022b), "Axisymmetric deformations in a nonlocal isotropic thermoelastic solid with two temperature", Forc. Mech., 6, 100068. https://doi.org/10.1016/j.finmec.2021.100068.
  26. Lee, Y.M. and Tsai, T.W. (2008), "Effect of interfacial contact conductance on thermo-elastic response in a two-layered material heated by ultra-fast pulse-laser", J. Phys. D: Appl. Phys., 41, 045308. https://doi.org/10.1088/0022-3727/41/4/045308.
  27. Lord, H.W. and Shulman, Y.A. (1972), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
  28. Marin, M., Hobiny, A. and Abbas, I. (2021a), "Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources", Math., 9(13), 1459. https://doi.org/10.3390/math9131459.
  29. Marin, M., Hobiny, A. and Abbas, I. (2021b), "The effects of fractional time derivatives in poro-thermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
  30. Marin, M., Ochsner, A. and Bhatti, M.M. (2020b), "Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM., 100(12), e202000090. https://doi.org/10.1002/zamm.202000090.
  31. Marin, M., Ochsner, A. and Craciun, E.M. (2020a), "A generalization of the Saint-Venant's principle for an elastic body with dipolar structure", Contin. Mech. Thermodyn., 32(1), 269-278. https://doi.org/10.1007/s00161-019-00827-6.
  32. Marin, M., Ochsner, A. and Vlase, S. (2023), "A model of dual-phase-lag thermoelasticity for a Cosserat body", Contin. Mech. Thermodyn., 35(1), 1-16. https://doi.org/10.1007/s00161-022-01164-x.
  33. Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermoelasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.2160290.
  34. Mashat, D., Zenkour, A.M. and Abouelregal, A. (2017), "Thermoelastic interactions in a rotating infinite orthotropic elastic body with a cylindrical hole and variable thermal conductivity", Arch. Mech. Eng., 64(4), 481-498. https://doi.org/10.1515/meceng-2017-0028.
  35. Othman, M.I.A., Eraki, E.M.E. and Ismail, M.F. (2023), "Study of micro-elongated thermoelastic medium loaded with a piezoelectric layer under the influence of gravity using the dual-phase-lag model", Int. J. Mech. Syst. Dyn., 3(2), 136-145. https://doi.org/10.1002/msd2.12075.
  36. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
  37. Othman, M.I.A., Said, S.M. and Gamal, E.M. (2024), "Eigenvalue approach on a fiber-reinforced magneto-visco-thermoelastic rotating medium with initial stress", J. Vib. Eng. Technol., 12(3), 5173-5187. https://doi.org/10.1007/s42417-023-01190-2.
  38. Purkait, P. and Kanoria, M. (2023), "The effect of inclined load and gravitational field on a 2-D thermoelastic medium under the influence of pulsed laser using dual phase lag model", Mech. Bas. Des. Struct. Mach., 51(11), 6497-6512. https://doi.org/10.1080/15397734.2022.2048850.
  39. Quintanilla, R. (2002), "Exponential stability in the dual-phase-lag heat conduction theory", J. Non-Equilibr. Thermodyn., 27(3), 217-227. https://doi.org/10.1515/JNETDY.2002.012.
  40. Quintanilla, R. and Racke, R. (2006), "A note on stability in dual-phase-lag heat conduction", Int. J. Heat Mass Transf., 49(7-8), 1209-1213. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016.
  41. Said, S.M. (2020), "The effect of gravity field in a two-temperature fiber-reinforcement thermoelastic half-space with dual-phase-lag model", Ind. J. Phys., 94(9), 1475-1481. https://doi.org/10.1007/s12648-019-01578-5.
  42. Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
  43. Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  44. Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2024), "Wave propagation on a nonlocal porous medium with memory-dependent derivative and gravity", Int. J. Comput. Mater. Sci. Eng., 13(1), 2350015. https://doi.org/10.1142/S204768412350015X.
  45. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31(1), 115-125. https://doi.org/10.1090/qam/99708
  46. Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
  47. Sharma, V., Ailawalia, P. and Kuma, S. (2024), "Wave propagation in a hygrothermoelastic half-space along with non-local variable", J. Appl. Sci. Eng., 27(5), 262. https://doi.org/10.6180/jase.202405_27(05).0001.
  48. Singh, K., Kaur, I. and Craciun, E.M. (2023), "Plane wave reflection in nonlocal semiconducting rotating media with extended model of three-phase-lag memory-dependent derivative", Symmetry, 15(10), 1844. https://doi.org/10.3390/sym15101844.
  49. Singh, S. and Lata, P. (2023), "Effect of two temperature and nonlocality in an isotropic thermoelastic thick circular plate without energy dissipation", Part. Diff. Eq. Appl. Math., 7, 100512. https://doi.org/10.1016/j.padiff.2023.100512.
  50. Tzou, D.Y. (1995a), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.
  51. Tzou, D.Y. (1995b), "A unified field approach for heat conduction from macro to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
  52. Youssef, H.M. (2005), "Theory of two-temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
  53. Zenkour, A.M., Saeed, T. and Aati, A.M. (2023), "Refined dual-phase-lag theory for the 1D behavior of skin tissue under ramp-type heating", Mater., 16(6), 2421. https://doi.org/10.3390/ma16062421.