References
- Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindricalcavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
- Abo-Dahab, S.M., Abd-Alla, A.M. and Mahmoud, S.R. (2013), "Effects of voids and rotation on plane waves in generalized thermoelasticity", Appl. Math. Comput., 27(12), 3607-3614. https://doi.org/10.1007/s12206-013-0903-3.
- Abouelregal, A.E. (2011), "Rayleigh waves in a thermoelastic solid half space using dual-phase-lag model", Int. J. Eng. Sci., 49(8), 781-791. https://doi.org/10.1016/j.ijengsci.2011.03.007.
- Abouelregal, A.E. and Zenkour, A. (2016), "Generalized thermoelastic interactions due to an inclined load at a two-temperature half-space", J. Theor. Appl. Mech., 54(3), 827-838. https://doi.org/10.15632/jtam-pl.54.3.827.
- Ailawalia, P. and Singla, A. (2015), "Disturbance due to internal heat source in thermoelastic solid using dual phase lag model", Struct. Eng. Mech., 56(3), 341-354. https://doi.org/10.12989/sem.2015.56.3.341.
- Alharbi, A.M., Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2022), "Fiber-reinforced micropolar thermoelastic rotating solid with voids and two-temperature in the context of memory-dependent derivative", Geomech. Eng., 28(4), 347-358. https://doi.org/10.12989/gae.2022.28.4.347.
- Al-Nimr, M.A. and Al-Huniti, N.S. (2000), "Transient thermal stresses in a thin elastic plate due to a rapid dual-phase-lag heating", J. Therm. Stress., 23(8), 731-746. https://doi.org/10.1080/01495730050192383.
- Barak, M.S. and Dhankhar, P. (2022), "Effect of inclined load on a functionally graded fiber-reinforced thermoelastic medium with temperature-dependent properties", Acta Mechanica, 233(9), 3645-3662. https://doi.org/10.1007/s00707-022-03293-5.
- Biot, M.A. (1956), "Thermoelasticity and irreversible thermodynamics", J. Appl. Phys., 27(3), 240-253. https://doi.org/10.1063/1.1722351.
- Chadwick, P. (1960), Thermoelasticity, The Dynamical Theory, Progress in Solid Mechanics, 1(263-328), 4.
- Chand, D., Sharma, J.N. and Sud, S.P. (1990), "Transient generalized magneto-thermoelastic waves in a rotating half space", Int. J. Eng. Sci., 28(6), 547-556. https://doi.org/10.1016/0020-7225(90)90057-P.
- Chen, J.K., Beraun, J.E. and Tzou, D.Y. (2002), "Thermomechanical response of metals heated by ultrashort-pulsed lasers", J. Therm. Stress., 25(6), 539-558. https://doi.org/10.1080/01495730290074289.
- Chirita, S. (2017), "On the time differential dual-phase-lag thermoelastic model", Meccanica, 52(1), 349-361. https://doi.org/10.1007/s11012-016-0414-2.
- Deswal, S., Poonia, R. and Kalkal, K.K. (2020), "Disturbances in an initially stressed fiber-reinforced orthotropic thermoelastic medium due to inclined load", J. Brazil Soc. Mech. Sci. Eng., 42, 1-15. https://doi.org/10.1007/s40430-020-02338-x.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
- Green, A.E. and Lindsay, K.A. (1972), "Thermoelasticity", J. Elast., 2(3), 1-7. https://doi.org/10.1007/BF00045689.
- Hetnarski, R.B. and Eslami, M.R. (2009), Thermal Stress-Advanced Theory and Applications, Springer Science Business Media, B.V., New York.
- Kaur, I., Parveen, L. and Kulvinder, S. (2021), "Reflection of plane harmonic wave in rotating media with fractional order heat transfer and two temperature", Part. Differ. Eq. Appl. Math., 4, 100049. https://doi.org/10.1016/j.padiff.2021.100049.
- Kaur, I., Singh, K. and Craciun, E.M. (2022), "A mathematical study of a semiconducting thermoelastic rotating solid cylinder with modified Moore-Gibson-thompson heat transfer under the hall effect", Math., 10(14), 2386. https://doi.org/10.3390/math10142386.
- Kumar, R. and Aliwalia, P. (2007), "Interactions due to time harmonic inclined load in micropolar thermoelastic medium possesing cubic symmetry without energy dissipation", Sci. Eng. Compos. Mater., 14(3), 229-240. https://doi.org/10.6180/jase.2010.13.2.01.
- Kumar, R. and Gupta, R.R. (2010), "Deformation due to inclined load in an orthotropic micropolar thermoelastic medium with two relaxation time", Int. J. Appl. Math. Inform. Sci., 4(3), 413-428.
- Lata, P. and Himanshi. (2022a), "Inclined load effect in an orthotropic magneto-thermoelastic solid with fractional order heat transfer", Struct. Eng. Mech., 81(5), 529-537. https://doi.org/10.12989/sem.2022.81.5.529.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Struct. Eng. Mech., 70(2), 245-255. http://doi.org/10.12289/sem.2019.70.2.245.
- Lata, P. and Singh, S. (2021), "Effects due to two temperature and hall current in a nonlocal isotropic magneto-thermoelastic solid with memory dependent derivatives", Coupl. Syse. Mech., 10(4), 351-369. https://doi.org/10.12989/csm.2021.10.4.351.
- Lata, P. and Singh, S. (2022b), "Axisymmetric deformations in a nonlocal isotropic thermoelastic solid with two temperature", Forc. Mech., 6, 100068. https://doi.org/10.1016/j.finmec.2021.100068.
- Lee, Y.M. and Tsai, T.W. (2008), "Effect of interfacial contact conductance on thermo-elastic response in a two-layered material heated by ultra-fast pulse-laser", J. Phys. D: Appl. Phys., 41, 045308. https://doi.org/10.1088/0022-3727/41/4/045308.
- Lord, H.W. and Shulman, Y.A. (1972), "Generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Marin, M., Hobiny, A. and Abbas, I. (2021a), "Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources", Math., 9(13), 1459. https://doi.org/10.3390/math9131459.
- Marin, M., Hobiny, A. and Abbas, I. (2021b), "The effects of fractional time derivatives in poro-thermoelastic materials using finite element method", Math., 9(14), 1606. https://doi.org/10.3390/math9141606.
- Marin, M., Ochsner, A. and Bhatti, M.M. (2020b), "Some results in Moore-Gibson-Thompson thermoelasticity of dipolar bodies", ZAMM., 100(12), e202000090. https://doi.org/10.1002/zamm.202000090.
- Marin, M., Ochsner, A. and Craciun, E.M. (2020a), "A generalization of the Saint-Venant's principle for an elastic body with dipolar structure", Contin. Mech. Thermodyn., 32(1), 269-278. https://doi.org/10.1007/s00161-019-00827-6.
- Marin, M., Ochsner, A. and Vlase, S. (2023), "A model of dual-phase-lag thermoelasticity for a Cosserat body", Contin. Mech. Thermodyn., 35(1), 1-16. https://doi.org/10.1007/s00161-022-01164-x.
- Marin, M., Seadawy, A., Vlase, S. and Chirila, A. (2022), "On mixed problem in thermoelasticity of type III for Cosserat media", J. Taibah Univ. Sci., 16(1), 1264-1274. https://doi.org/10.1080/16583655.2022.2160290.
- Mashat, D., Zenkour, A.M. and Abouelregal, A. (2017), "Thermoelastic interactions in a rotating infinite orthotropic elastic body with a cylindrical hole and variable thermal conductivity", Arch. Mech. Eng., 64(4), 481-498. https://doi.org/10.1515/meceng-2017-0028.
- Othman, M.I.A., Eraki, E.M.E. and Ismail, M.F. (2023), "Study of micro-elongated thermoelastic medium loaded with a piezoelectric layer under the influence of gravity using the dual-phase-lag model", Int. J. Mech. Syst. Dyn., 3(2), 136-145. https://doi.org/10.1002/msd2.12075.
- Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Othman, M.I.A., Said, S.M. and Gamal, E.M. (2024), "Eigenvalue approach on a fiber-reinforced magneto-visco-thermoelastic rotating medium with initial stress", J. Vib. Eng. Technol., 12(3), 5173-5187. https://doi.org/10.1007/s42417-023-01190-2.
- Purkait, P. and Kanoria, M. (2023), "The effect of inclined load and gravitational field on a 2-D thermoelastic medium under the influence of pulsed laser using dual phase lag model", Mech. Bas. Des. Struct. Mach., 51(11), 6497-6512. https://doi.org/10.1080/15397734.2022.2048850.
- Quintanilla, R. (2002), "Exponential stability in the dual-phase-lag heat conduction theory", J. Non-Equilibr. Thermodyn., 27(3), 217-227. https://doi.org/10.1515/JNETDY.2002.012.
- Quintanilla, R. and Racke, R. (2006), "A note on stability in dual-phase-lag heat conduction", Int. J. Heat Mass Transf., 49(7-8), 1209-1213. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.016.
- Said, S.M. (2020), "The effect of gravity field in a two-temperature fiber-reinforcement thermoelastic half-space with dual-phase-lag model", Ind. J. Phys., 94(9), 1475-1481. https://doi.org/10.1007/s12648-019-01578-5.
- Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2024), "Wave propagation on a nonlocal porous medium with memory-dependent derivative and gravity", Int. J. Comput. Mater. Sci. Eng., 13(1), 2350015. https://doi.org/10.1142/S204768412350015X.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31(1), 115-125. https://doi.org/10.1090/qam/99708
- Sharma, N., Kumar, R. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperatures and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
- Sharma, V., Ailawalia, P. and Kuma, S. (2024), "Wave propagation in a hygrothermoelastic half-space along with non-local variable", J. Appl. Sci. Eng., 27(5), 262. https://doi.org/10.6180/jase.202405_27(05).0001.
- Singh, K., Kaur, I. and Craciun, E.M. (2023), "Plane wave reflection in nonlocal semiconducting rotating media with extended model of three-phase-lag memory-dependent derivative", Symmetry, 15(10), 1844. https://doi.org/10.3390/sym15101844.
- Singh, S. and Lata, P. (2023), "Effect of two temperature and nonlocality in an isotropic thermoelastic thick circular plate without energy dissipation", Part. Diff. Eq. Appl. Math., 7, 100512. https://doi.org/10.1016/j.padiff.2023.100512.
- Tzou, D.Y. (1995a), "Experimental support for the lagging behavior in heat propagation", J. Thermophys. Heat Transf., 9(4), 686-693. https://doi.org/10.2514/3.725.
- Tzou, D.Y. (1995b), "A unified field approach for heat conduction from macro to micro-scales", ASME J. Heat Transf., 117(1), 8-16. https://doi.org/10.1115/1.2822329.
- Youssef, H.M. (2005), "Theory of two-temperature generalized thermoelasticity", IMA J. Appl. Math., 71(3), 383-390. https://doi.org/10.1093/imamat/hxh101.
- Zenkour, A.M., Saeed, T. and Aati, A.M. (2023), "Refined dual-phase-lag theory for the 1D behavior of skin tissue under ramp-type heating", Mater., 16(6), 2421. https://doi.org/10.3390/ma16062421.