Acknowledgement
This work was supported by the National Research Foundation of Korea (2021R1C1C1004200).
References
- Adam, A. L., Kohut, G. and Hornok, L. 2008. Fphog1, a HOG-type MAP kinase gene, is involved in multistress response in Fusarium proliferatum. J Basic Microbiol. 48:151-159. https://doi.org/10.1002/jobm.200700403
- Angel, P., Allegretto, E. A., Okino, S. T., Hattori, K., Boyle, W. J., Hunter, T. and Karin, M. 1988. Oncogene jun encodes a sequence-specific trans-activator similar to AP-1. Nature 332:166-171. https://doi.org/10.1038/332166a0
- Angelova, P. R. and Abramov, A. Y. 2018. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592:692-702. https://doi.org/10.1002/1873-3468.12964
- Avery, S. V. 2001. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol. 49:111-142. https://doi.org/10.1016/S0065-2164(01)49011-3
- Avery, S. V. 2011. Molecular targets of oxidative stress. Biochem. J. 434:201-210. https://doi.org/10.1042/BJ20101695
- Bahn, Y.-S. 2008. Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. Eukaryot. Cell 7:2017-2036. https://doi.org/10.1128/EC.00323-08
- Baker, R. D., Cook, C. O. and Goodwin, D. C. 2006. Catalase-peroxidase active site restructuring by a distant and "inactive" domain. Biochemistry 45:7113-7121. https://doi.org/10.1021/bi052392y
- Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744. https://doi.org/10.1126/science.1171647
- Buck, V., Quinn, J., Pino, T. S., Martin, H., Saldanha, J., Makino, K., Morgan, B. A. and Millar, J. B. A. 2001. Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12:407-419. https://doi.org/10.1091/mbc.12.2.407
- Bussink, H.-J. and Oliver, R. 2001. Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. Eur. J. Biochem. 268:15-24. https://doi.org/10.1046/j.1432-1327.2001.01774.x
- Charizanis, C., Juhnke, H., Krems, B. and Entian, K.-D. 1999. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 261:740-752. https://doi.org/10.1007/s004380050017
- Chelikani, P., Fita, I. and Loewen, P. C. 2004. Diversity of structures and properties among catalases. Cell. Mol. Life Sci. 61:192-208. https://doi.org/10.1007/s00018-003-3206-5
- Chen, L.-H., Lin, C.-H. and Chung, K.-R. 2012. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet. Biol. 49:802-813.
- Chen, R. E. and Thorner, J. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773:1311-1340. https://doi.org/10.1016/j.bbamcr.2007.05.003
- Clempus, R. E. and Griendling, K. K. 2006. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71:216-225. https://doi.org/10.1016/j.cardiores.2006.02.033
- Couto, N., Wood, J. and Barber, J. 2016. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 95:27-42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028
- Cui, H., Tsuda, K. and Parker, J. E. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487-511. https://doi.org/10.1146/annurev-arplant-050213-040012
- D'Autreaux, B. and Toledano, M. B. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813-824. https://doi.org/10.1038/nrm2256
- del Rio, L. A. and Lopez-Huertas, E. 2016. ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 57:1364-1376.
- Delaunay, A., Isnard, A.-D. and Toledano, M. B. 2000. H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19:5157-5166. https://doi.org/10.1093/emboj/19.19.5157
- Delaunay, A., Pflieger, D., Barrault, M.-B., Vinh, J. and Toledano, M. B. 2002. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471-481. https://doi.org/10.1016/S0092-8674(02)01048-6
- Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. 2001. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. U. S. A. 98:13454-13459. https://doi.org/10.1073/pnas.231178298
- Fang, G.-C., Hanau, R. M. and Vaillancourt, L. J. 2002. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola. Fungal Genet. Biol. 36:155-165.
- Fang, Y., Xiong, D., Tian, L., Tang, C., Wang, Y. and Tian, C. 2017. Functional characterization of two bZIP transcription factors in Verticillium dahliae. Gene 626:386-394. https://doi.org/10.1016/j.gene.2017.05.061
- Fassler, J. S. and West, A. H. 2011. Fungal Skn7 stress responses and their relationship to virulence. Eukaryot. Cell 10:156-167. https://doi.org/10.1128/EC.00245-10
- Feng, H., Xu, M., Gao, Y., Liang, J., Guo, F., Guo, Y. and Huang, L. 2021. Vm-milR37 contributes to pathogenicity by regulating glutathione peroxidase gene VmGP in Valsa mali. Mol. Plant Pathol. 22:243-254. https://doi.org/10.1111/mpp.13023
- Fernandez, J. and Wilson, R. A. 2014. Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease. PLoS ONE 9:e87300.
- Fraaije, M. W., Roubroeks, H. P., Hagen, W. R. and Van Berkel, W. J. 1996. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. Eur. J. Biochem. 235:192-198. https://doi.org/10.1111/j.1432-1033.1996.00192.x
- Fridovich, I. 1986. Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58:61-97.
- Gacto, M., Soto, T., Vicente-Soler, J., Villa, T. G. and Cansado, J. 2003. Learning from yeasts: intracellular sensing of stress conditions. Int. Microbiol. 6:211-219. https://doi.org/10.1007/s10123-003-0136-x
- Gao, S., Gold, S. E. and Glenn, A. E. 2018. Characterization of two catalase-peroxidase-encoding genes in Fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges. Mol. Plant Pathol. 19:1127-1139. https://doi.org/10.1111/mpp.12591
- Garcia-Caparros, P., De Filippis, L., Gul, A., Hasanuzzaman, M., Ozturk, M., Altay, V. and Lao, M. T. 2021. Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot. Rev. 87:421-466. https://doi.org/10.1007/s12229-020-09231-1
- Gullner, G. and Komives, T. 2001. The role of glutathione and glutathione-related enzymes in plant-pathogen interactions. In: Significance of glutathione to plant adaptation to the environment, eds. by D. Grill, M. Tausz and L. J. De Kok, pp. 207-239. Kluwer Academic Publishers, Dordrecht, Germany.
- Guo, M., Chen, Y., Du, Y., Dong, Y., Guo, W., Zhai, S., Zhang, H., Dong, S., Zhang, Z., Wang, Y., Wang, P. and Zheng, X. 2011. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 7:e1001302.
- Guo, Y., Yao, S., Yuan, T., Wang, Y., Zhang, D. and Tang, W. 2019. The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants. Mol. Plant Pathol. 20:685-700. https://doi.org/10.1111/mpp.12785
- Hansberg, W., Salas-Lizana, R. and Dominguez, L. 2012. Fungal catalases: function, phylogenetic origin and structure. Arch. Biochem. Biophys. 525:170-180. https://doi.org/10.1016/j.abb.2012.05.014
- He, X.-J., Mulford, K. E. and Fassler, J. S. 2009. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain. Eukaryot. Cell 8:768-778. https://doi.org/10.1128/EC.00021-09
- Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300-372. https://doi.org/10.1128/MMBR.66.2.300-372.2002
- Huang, K., Czymmek, K. J., Caplan, J. L., Sweigard, J. A. and Donofrio, N. M. 2011. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7:e1001335.
- Huang, Z., Lu, J., Liu, R., Wang, P., Hu, Y., Fang, A., Yang, Y., Qing, L., Bi, C. and Yu, Y. 2021. SsCat2 encodes a catalase that is critical for the antioxidant response, QoI fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genet. Biol. 149:103530.
- Ikner, A. and Shiozaki, K. 2005. Yeast signaling pathways in the oxidative stress response. Mutat Res. 569: 13-27. https://doi.org/10.1016/j.mrfmmm.2004.09.006
- Irieda, H., Inoue, Y., Mori, M., Yamada, K., Oshikawa, Y., Saitoh, H., Uemura, A., Terauchi, R., Kitakura, S., Kosaka, A., Singkaravanit-Ogawa, S. and Takano, Y. 2019. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc. Natl. Acad. Sci. U. S. A. 116:496-505. https://doi.org/10.1073/pnas.1807297116
- Jiang, C., Zhang, S., Zhang, Q., Tao, Y., Wang, C. and Xu, J.-R. 2015. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Environ. Microbiol. 17:1245-1260. https://doi.org/10.1111/1462-2920.12561
- Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
- Kadota, Y., Liebrand, T. W. H., Goto, Y., Sklenar, J., Derbyshire, P., Menke, F. L. H., Torres, M.-A., Molina, A., Zipfel, C., Coaker, G. and Shirasu, K. 2019. Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol. 221:2160-2175. https://doi.org/10.1111/nph.15523
- Kadota, Y., Shirasu, K. and Zipfel, C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol. 56:1472-1480.
- Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J. D., Shirasu, K., Menke, F., Jones, A. and Zipfel, C. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during plant immunity. Mol. Cell 54:43-55. https://doi.org/10.1016/j.molcel.2014.02.021
- Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. U. S. A. 103:11086-11091. https://doi.org/10.1073/pnas.0508882103
- Kaserer, A. O., Andi, B., Cook, P. F. and West, A. H. 2009. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 48:8044-8050. https://doi.org/10.1021/bi900886g
- Kinseth, M. A., Anjard, C., Fuller, D., Guizzunti, G., Loomis, W. F. and Malhotra, V. 2007. The Golgi-associated protein GRASP is required for unconventional protein secretion during development. Cell 130:524-534. https://doi.org/10.1016/j.cell.2007.06.029
- Kuge, S., Jones, N. and Nomoto, A. 1997. Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J. 16:1710-1720. https://doi.org/10.1093/emboj/16.7.1710
- Lawrence, C. L., Maekawa, H., Worthington, J. L., Reiter, W., Wilkinson, C. R. M. and Jones, N. 2007. Regulation of Schizosaccharomyces pombe Atf1 protein levels by Sty1-mediated phosphorylation and heterodimerization with Pcr1. J. Biol. Chem. 282:5160-5170. https://doi.org/10.1074/jbc.M608526200
- Lee, C. G., Da Silva, C. A., Lee, J.-Y., Hartl, D. and Elias, J. A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol. 20:684-689. https://doi.org/10.1016/j.coi.2008.10.002
- Lee, Y., Min, K., Son, H., Park, A. R., Kim, J.-C., Choi, G. J. and Lee, Y.-W. 2014. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Mol. Plant-Microbe Interact. 27:1344-1355. https://doi.org/10.1094/MPMI-05-14-0145-R
- Lee, Y., Son, H., Shin, J. Y., Choi, G. J. and Lee, Y.-W. 2018. Genome-wide functional characterization of putative peroxidases in the head blight fungus Fusarium graminearum. Mol. Plant Pathol. 19:715-730. https://doi.org/10.1111/mpp.12557
- Lev, S., Hadar, R., Amedeo, P., Baker, S. E., Yoder, O. C. and Horwitz, B. A. 2005. Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot. Cell 4:443-454. https://doi.org/10.1128/EC.4.2.443-454.2005
- Levin, D. E. 2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145-1175. https://doi.org/10.1534/genetics.111.128264
- Levin, D. E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69:262-291. https://doi.org/10.1128/MMBR.69.2.262-291.2005
- Li, J., Zhang, Z.-G., Ji, R., Wang, Y.-C. and Zheng, X.-B. 2005. Hydrogen peroxide regulates elicitor PB90-induced cell death and defense in non-heading Chinese cabbage. Physiol. Mol. Plant Pathol. 67:220-230. https://doi.org/10.1016/j.pmpp.2006.02.002
- Li, S., Dean, S., Li, Z., Horecka, J., Deschenes, R. J. and Fassler, J. S. 2002. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol. Biol. Cell 13:412-424. https://doi.org/10.1091/mbc.01-09-0434
- Li, T., Huang, C.-M., Zhang, D.-D., Li, R., Chen, J.-Y., Sun, W.-X., Qiu, N.-W. and Dai, X.-F. 2021. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae. J. Integr. Agric. 20:1858-1870. https://doi.org/10.1016/S2095-3119(20)63353-6
- Li, X., Wu, Y., Liu, Z. and Zhang, C. 2017. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides. Microbiol. Res. 197:39-48. https://doi.org/10.1016/j.micres.2017.01.006
- Lin, C.-H. and Chung, K.-R. 2010. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet. Biol. 47:818-827. https://doi.org/10.1016/j.fgb.2010.06.009
- Lin, C.-H., Yang, S. L. and Chung, K.-R. 2009. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant-Microbe Interact. 22:942-952. https://doi.org/10.1094/MPMI-22-8-0942
- Lin, C.-H., Yang, S. L. and Chung, K.-R. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr. Microbiol. 62:807-815. https://doi.org/10.1007/s00284-010-9795-y
- Liu, J., Guan, T., Zheng, P., Chen, L., Yang, Y., Huai, B., Li, D., Chang, Q., Huang, L. and Kang, Z. 2016. An extracellular Zn-only superoxide dismutase from Puccinia striiformis confers enhanced resistance to host-derived oxidative stress. Environ. Microbiol. 18:4118-4135. https://doi.org/10.1111/1462-2920.13451
- Liu, X., Zhou, Q., Guo, Z., Liu, P., Shen, L., Chai, N., Qian, B., Cai, Y., Wang, W., Yin, Z., Zhang, H., Zheng, X. and Zhang, Z. 2020. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 9:e61605.
- Lopez-Cruz, J., Oscar, C.-S., Emma, F.-C., Pilar, G.-A. and Carmen, G.-B. 2017. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. Mol. Plant Pathol. 18:16-31. https://doi.org/10.1111/mpp.12370
- Ma, H., Wang, M., Gai, Y., Fu, H., Zhang, B., Ruan, R., Chung, K.-R. and Li, H. 2018. Thioredoxin and glutaredoxin systems required for oxidative stress resistance, fungicide sensitivity, and virulence of Alternaria alternata. Appl. Environ. Microbiol. 84:e00086-18.
- Macia, J., Regot, S., Peeters, T., Conde, N., Sole, R. and Posas, F. 2009. Dynamic signaling in the Hog1 MAPK pathway relies on high basal signal transduction. Sci. Signal 2:ra13.
- Marcec, M. J., Gilroy, S., Poovaiah, B. W. and Tanaka, K. 2019. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 283:343-354. https://doi.org/10.1016/j.plantsci.2019.03.004
- McCord, J. M. and Fridovich, I. 1969. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5
- McCubrey, J. A., LaHair, M. M. and Franklin, R. A. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 8:1775-1789. https://doi.org/10.1089/ars.2006.8.1775
- Meister, A. and Anderson, M. E. 1983. Glutathione. Annu. Rev. Biochem. 52:711-760. https://doi.org/10.1146/annurev.bi.52.070183.003431
- Miller, A.-F. 2012. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett. 586:585-595. https://doi.org/10.1016/j.febslet.2011.10.048
- Mir, A. A., Park, S.-Y., Sadat, M. A., Kim, S., Choi, J., Jeon, J. and Lee, Y.-H. 2015. Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Sci. Rep. 5:11831.
- Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V. and Van Breusegem, F. 2011. ROS signaling: the new wave? Trends Plant Sci. 16:300-309. https://doi.org/10.1016/j.tplants.2011.03.007
- Molina, L. and Kahmann, R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293-2309.
- Montibus, M., Ducos, C., Bonnin-Verdal, M.-N., Bormann, J., Ponts, N., Richard-Forget, F. and Barreau, C. 2013. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoS ONE 8:e83377.
- Moore, S., De Vries, O. M. H. and Tudzynski, P. 2002. The major Cu,Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity. Mol. Plant Pathol. 3:9-22. https://doi.org/10.1046/j.1464-6722.2001.00088.x
- Morgan, B. A., Banks, G. R., Toone, W. M., Raitt, D., Kuge, S. and Johnston, L. H. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:1035-1044. https://doi.org/10.1093/emboj/16.5.1035
- Moriwaki, A., Kubo, E., Arase, S. and Kihara, J. 2006. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae. FEMS Microbiol. Lett. 257:253-261. https://doi.org/10.1111/j.1574-6968.2006.00178.x
- Mulford, K. E. and Fassler, J. S. 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eukaryot. Cell 10:761-769. https://doi.org/10.1128/EC.00328-10
- Nathues, E., Joshi, S., Tenberge, K. B., von den Driesch, M., Oeser, B., Baumer, N., Mihlan, M. and Tudzynski, P. 2004. CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol. Plant-Microbe Interact. 17:383-393. https://doi.org/10.1094/MPMI.2004.17.4.383
- Ngou, B. P. M., Ding, P. and Jones, J. D. G. 2022. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34:1447-1478.
- Nguyen, T. V., Schafer, W. and Bormann, J. 2012. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact. 25:1142-1156. https://doi.org/10.1094/MPMI-02-12-0047-R
- Nicholls, P. 2012. Classical catalase: ancient and modern. Arch. Biochem. Biophys. 525:95-101. https://doi.org/10.1016/j.abb.2012.01.015
- Nickel, W. 2003. The mystery of nonclassical protein secretion: a current view on cargo proteins and potential export. Eur. J. Biochem. 270:2109-2119. https://doi.org/10.1046/j.1432-1033.2003.03577.x
- O'Rourke, S. M. and Herskowitz, I. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15:532-542. https://doi.org/10.1091/mbc.e03-07-0521
- Park, J., Han, J. W., Lee, N., Kim, S., Choi, S., Lee, H.-H., Kim, J.-E., Seo, Y.-S., Choi, G. J., Lee, Y.-W., Kim, H. and Son, H. 2024. Sulfur metabolism-mediated fungal glutathione biosynthesis is essential for oxidative stress resistance and pathogenicity in the plant pathogenic fungus Fusarium graminearum. mBio 15:e0240123.
- Park, J., Lee, H.-H., Moon, H., Lee, N., Kim, S., Kim, J.-E., Lee, Y., Min, K., Kim, H., Choi, G. J., Lee, Y.-W., Seo, Y.-S. and Son, H. 2023. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol. Spectr. 11:e0148523.
- Peng, Y., van Wersch, R. and Zhang, Y. 2018. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant-Microbe Interact. 31:403-409. https://doi.org/10.1094/MPMI-06-17-0145-CR
- Posas, F., Wurgler-Murphy, S. M., Maeda, T., Witten, E. A., Thai, T. C. and Saito, H. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86:865-875. https://doi.org/10.1016/S0092-8674(00)80162-2
- Qi, M. and Elion, E. A. 2005. MAP kinase pathways. J. Cell. Sci. 118:3569-3572. https://doi.org/10.1242/jcs.02470
- Qi, X., Guo, L., Yang, L. and Huang, J. 2013. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiol. Mol. Plant Pathol. 84:76-85. https://doi.org/10.1016/j.pmpp.2013.07.007
- Quinn, J., Findlay, V. J., Dawson, K., Millar, J. B. A., Jones, N., Morgan, B. A. and Toone, W. M. 2002. Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 13:805-816. https://doi.org/10.1091/mbc.01-06-0288
- Raffaello, T., Kerio, S. and Asiegbu, F. O. 2012. Role of the HaHOG1 MAP kinase in response of the conifer root and but rot pathogen (Heterobasidion annosum) to osmotic and oxidative stress. PLoS ONE 7:e31186.
- Reczek, C. R. and Chandel, N. S. 2015. ROS-dependent signal transduction. Curr. Opin. Cell Biol. 33:8-13. https://doi.org/10.1016/j.ceb.2014.09.010
- Rep, M., Proft, M., Remize, F., Tamas, M., Serrano, R., Thevelein, J. M. and Hohmann, S. 2001. The Saccharomyces cerevisiae Sko1p transcription factor mediates HOG pathway-dependent osmotic regulation of a set of genes encoding enzymes implicated in protection from oxidative damage. Mol. Microbiol. 40:1067-1083. https://doi.org/10.1046/j.1365-2958.2001.02384.x
- Robbertse, B., Yoder, O. C., Nguyen, A., Schoch, C. L. and Turgeon, B. G. 2003. Deletion of all Cochliobolus heterostrophus monofunctional catalase-encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence. Mol. Plant-Microbe Interact. 16:1013-1021. https://doi.org/10.1094/MPMI.2003.16.11.1013
- Sagi, M. and Fluhr, R. 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141:336-340. https://doi.org/10.1104/pp.106.078089
- Salat-Canela, C., Paulo, E., Sanchez-Mir, L., Carmona, M., Ayte, J., Oliva, B. and Hidalgo, E. 2017. Deciphering the role of the signal- and Sty1 kinase-dependent phosphorylation of the stress-responsive transcription factor Atf1 on gene activation. J. Biol. Chem. 292:13635-13644. https://doi.org/10.1074/jbc.M117.794339
- Sanabria, N. M., Huang, J.-C. and Dubery, I. A. 2010. Self/nonself perception in plants in innate immunity and defense. Self Nonself 1:40-54. https://doi.org/10.4161/self.1.1.10442
- Santos-Sanchez, N. F., Salas-Coronado, R., Villanueva-Canongo, C. and Hernandez-Carlos, B. 2019. Antioxidant compounds and their antioxidant mechanism. In: Antioxidants, ed. by E. Shalaby, pp. 1-28. IntechOpen, London, UK.
- Schieber, M. and Chandel, N. S. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453-R462. https://doi.org/10.1016/j.cub.2014.03.034
- Schouten, A., Tenberge, K. B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B. and Van Kan, J. A. L. 2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Mol. Plant Pathol. 3:227-238. https://doi.org/10.1046/j.1364-3703.2002.00114.x
- Schreiber, K. J., Chau-Ly, I. J. and Lewis, J. D. 2021. What the wild things do: mechanisms of plant host manipulation by bacterial type III-secreted effector proteins. Microorganisms 9:1029.
- Schwessinger, B. and Zipfel, C. 2008. News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr. Opin. Plant Biol. 11:389-395. https://doi.org/10.1016/j.pbi.2008.06.001
- Seger, R. and Krebs, E. G. 1995. The MAPK signaling cascade. FASEB J. 9:726-735. https://doi.org/10.1096/fasebj.9.9.7601337
- Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot. Cell 6:211-221. https://doi.org/10.1128/EC.00153-06
- Shalaby, S., Larkov, O., Lamdan, N. L. and Horwitz, B. A. 2014. Genetic interaction of the stress response factors ChAP1 and Skn7 in the maize pathogen Cochliobolus heterostrophus. FEMS Microbiol. Lett. 350:83-89. https://doi.org/10.1111/1574-6968.12314
- Skamnioti, P., Henderson, C., Zhang, Z., Robinson, Z. and Gurr, S. J. 2007. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 20:568-580. https://doi.org/10.1094/MPMI-20-5-0568
- Smith, D. A., Morgan, B. A. and Quinn, J. 2010. Stress signalling to fungal stress-activated protein kinase pathways. FEMS Microbiol. Lett. 306:1-8. https://doi.org/10.1111/j.1574-6968.2010.01937.x
- Snelders, N. C., Rovenich, H., Petti, G. C., Rocafort, M., van den Berg, G. C. M., Vorholt, J. A., Mesters, J. R., Seidl, M. F., Nijland, R. and Thomma, B. P. H. J. 2020. Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins. Nat. Plants 6:1365-1374. https://doi.org/10.1038/s41477-020-00799-5
- Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G. and Pae, H.-O. 2011. Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J. Signal Transduct. 2011:792639.
- Srinivas, U. S., Tan, B. W., Vellayappan, B. A. and Jeyasekharan, A. D. 2019. ROS and the DNA damage response in cancer. Redox Biol. 25:101084.
- Stadtman, E. R. and Levine, R. L. 2000. Protein oxidation. Ann. N. Y. Acad. Sci. 899:191-208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x
- Sun, Y., Wang, Y. and Tian, C. 2016. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet. Biol. 95:58-66. https://doi.org/10.1016/j.fgb.2016.08.006
- Suzuki, N., Miller, G., Morales, J., Shulaev, V., Torres, M. A. and Mittler, R. 2011. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14:691-699. https://doi.org/10.1016/j.pbi.2011.07.014
- Szabo, Z., Pakozdi, K., Murvai, K., Pusztahelyi, T., Kecskemeti, A., Gaspar, A., Logrieco, A. F., Emri, T., Adam, A. L., Leiter, E., Hornok, L. and Pocsi, I. 2020. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides. Appl. Microbiol. Biotechnol. 104:7879-7899. https://doi.org/10.1007/s00253-020-10717-6
- Tanabe, S., Ishii-Minami, N., Saitoh, K.-I., Otake, Y., Kaku, H., Shibuya, N., Nishizawa, Y. and Minami, E. 2011. The role of catalase-peroxidase secreted by Magnaporthe oryzae during early infection of rice cells. Mol. Plant-Microbe Interact. 24:163-171. https://doi.org/10.1094/MPMI-07-10-0175
- Tanabe, S., Nishizawa, Y. and Minami, E. 2009. Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol. Plant. 137:148-154. https://doi.org/10.1111/j.1399-3054.2009.01272.x
- Tang, C., Xiong, D., Fang, Y., Tian, C. and Wang, Y. 2017. The two-component response regulator VdSkn7 plays key roles in microsclerotial development, stress resistance and virulence of Verticillium dahliae. Fungal Genet. Biol. 108:26-35. https://doi.org/10.1016/j.fgb.2017.09.002
- Temme, N. and Tudzynski, P. 2009. Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol. Plant-Microbe Interact. 22:987-998. https://doi.org/10.1094/MPMI-22-8-0987
- Tena, G., Boudsocq, M. and Sheen, J. 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14:519-529. https://doi.org/10.1016/j.pbi.2011.05.006
- Tian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. P. G., Inderbitzin, P., Subbarao, K. V., Chen, J. and Dai, X. 2021a. Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. Mol. Plant Pathol. 22:1092-1108.
- Tian, L., Sun, W., Li, J., Chen, J., Dai, X., Qiu, N. and Zhang, D. 2021b. Unconventionally secreted manganese superoxide dismutase VdSOD3 is required for the virulence of Verticillium dahliae. Agronomy 11:13.
- Toone, W. M. and Jones, N. 1999. AP-1 transcription factors in yeast. Curr. Opin. Genet. Dev. 9:55-61. https://doi.org/10.1016/S0959-437X(99)80008-2
- Toone, W. M., Morgan, B. A. and Jones, N. 2001. Redox control of AP-1-like factors in yeast and beyond. Oncogene 20:2336-2346. https://doi.org/10.1038/sj.onc.1204384
- Torres, M. A. 2010. ROS in biotic interactions. Physiol Plant. 138: 414-429. https://doi.org/10.1111/j.1399-3054.2009.01326.x
- Torres, M. A., Jones, J. D. G. and Dangl, J. L. 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141:373-378.
- Tsuda, K. and Katagiri, F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr. Opin. Plant Biol. 13:459-465. https://doi.org/10.1016/j.pbi.2010.04.006
- Van Nguyen, T., Kroger, C., Bonnighausen, J., Schafer, W. and Bormann, J. 2013. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Mol. Plant-Microbe Interact. 26:1378-1394. https://doi.org/10.1094/MPMI-04-13-0125-R
- Veluchamy, S., Williams, B., Kim, K. and Dickman, M. B. 2012. The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production. Physiol. Mol. Plant Pathol. 78:14-23. https://doi.org/10.1016/j.pmpp.2011.12.005
- Viefhues, A., Schlathoelter, I., Simon, A., Viaud, M. and Tudzynski, P. 2015. Unraveling the function of the response regulator BcSkn7 in the stress signaling network of Botrytis cinerea. Eukaryot. Cell 14:636-651. https://doi.org/10.1128/EC.00043-15
- Vivancos, A. P., Jara, M., Zuin, A., Sanso, M. and Hidalgo, E. 2006. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol. Genet. Genomics 276: 495-502. https://doi.org/10.1007/s00438-006-0175-z
- Wang, Q., Pokhrel, A. and Coleman, J. J. 2021. The extracellular superoxide dismutase Sod5 from Fusarium oxysporum is localized in response to external stimuli and contributes to fungal pathogenicity. Front. Plant Sci. 12:608861.
- Wang, W. and Jiao, F. 2019. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta 250:413-425. https://doi.org/10.1007/s00425-019-03219-x
- Wendel, A. 1980. Glutathione peroxidase. Methods Enzymol. 77:325-333. https://doi.org/10.1016/S0076-6879(81)77046-0
- Whittaker, J. W. 2012. Non-heme manganese catalase: the 'other' catalase. Arch. Biochem. Biophys. 525:111-120. https://doi.org/10.1016/j.abb.2011.12.008
- Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J.-C., Toda, T., Millar, J. B. and Jones, N. 1996. The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10:2289-2301. https://doi.org/10.1101/gad.10.18.2289
- Wood, M. J., Storz, G. and Tjandra, N. 2004. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430:917-921. https://doi.org/10.1038/nature02790
- Wullschleger, S., Loewith, R. and Hall, M. N. 2006. TOR signaling in growth and metabolism. Cell 124:471-484. https://doi.org/10.1016/j.cell.2006.01.016
- Yan, C., Lee, L. H. and Davis, L. I. 1998. Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J. 17:7416-7429. https://doi.org/10.1093/emboj/17.24.7416
- Yang, Q., Yin, D., Yin, Y., Cao, Y. and Ma, Z. 2015. The response regulator BcSkn7 is required for vegetative differentiation and adaptation to oxidative and osmotic stresses in Botrytis cinerea. Mol. Plant Pathol. 16:276-287. https://doi.org/10.1111/mpp.12181
- Yang, S. L., Yu, P.-L. and Chung, K.-R. 2016. The glutathione peroxidase-mediated reactive oxygen species resistance, fungicide sensitivity and cell wall construction in the citrus fungal pathogen Alternaria alternata. Environ. Microbiol. 18:923-935. https://doi.org/10.1111/1462-2920.13125
- Yang, Y., Bazhin, A. V., Werner, J. and Karakhanova, S. 2013. Reactive oxygen species in the immune system. Int. Rev. Immunol. 32:249-270. https://doi.org/10.3109/08830185.2012.755176
- Yao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L. and Tang, W.-H. 2016. A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genet. Biol. 91:32-42. https://doi.org/10.1016/j.fgb.2016.03.006
- Yarden, O., Veluchamy, S., Dickman, M. B. and Kabbage, M. 2014. Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiol. Mol. Plant Pathol. 85:34-41. https://doi.org/10.1016/j.pmpp.2013.12.001
- Yu, P.-L., Wang, C.-L., Chen, P.-Y. and Lee, M.-H. 2017. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. Mol. Plant Pathol. 18:783-797. https://doi.org/10.1111/mpp.12438
- Yuan, M., Ngou, B. P. M., Ding, P. and Xin, X.-F. 2021a. PTIETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62:102030.
- Yuan, P., Qian, W., Jiang, L., Jia, C., Ma, X., Kang, Z. and Liu, J. 2021b. A secreted catalase contributes to Puccinia striiformis resistance to host-derived oxidative stress. Stress Biol. 1:22.
- Zamocky, M., Droghetti, E., Bellei, M., Gasselhuber, B., Pabst, M., Furtmuller, P. G., Battistuzzi, G., Smulevich, G. and Obinger, C. 2012a. Eukaryotic extracellular catalase-peroxidase from Magnaporthe grisea: biophysical/chemical characterization of the first representative from a novel phytopathogenic KatG group. Biochimie 94:673-683. https://doi.org/10.1016/j.biochi.2011.09.020
- Zamocky, M., Furtmuller, P. G., Bellei, M., Battistuzzi, G., Stadlmann, J., Vlasits, J. and Obinger, C. 2009a. Intracellular catalase/peroxidase from the phytopathogenic rice blast fungus Magnaporthe grisea: expression analysis and biochemical characterization of the recombinant protein. Biochem. J. 418:443-451. https://doi.org/10.1042/BJ20081478
- Zamocky, M., Furtmuller, P. G. and Obinger, C. 2008. Evolution of catalases from bacteria to humans. Antioxid. Redox Signal. 10:1527-1548. https://doi.org/10.1089/ars.2008.2046
- Zamocky, M., Furtmuller, P. G. and Obinger, C. 2009b. Two distinct groups of fungal catalase/peroxidases. Biochem. Soc. Trans. 37:772-777. https://doi.org/10.1042/BST0370772
- Zamocky, M., Gasselhuber, B., Furtmuller, P. G. and Obinger, C. 2012b. Molecular evolution of hydrogen peroxide degrading enzymes. Arch. Biochem. Biophys. 525:131-144. https://doi.org/10.1016/j.abb.2012.01.017
- Zarrinpar, A., Bhattacharyya, R. P., Nittler, M. P. and Lim, W. A. 2004. Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol. Cell 14:825-832. https://doi.org/10.1016/j.molcel.2004.06.011
- Zelko, I. N., Mariani, T. J. and Folz, R. J. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic. Biol. Med. 33:337-349. https://doi.org/10.1016/S0891-5849(02)00905-X
- Zhang, H., Shen, W., Zhang, D., Shen, X., Wang, F., Hsiang, T., Liu, J. and Li, G. 2021. The bZIP transcription factor LtAP1 modulates oxidative stress tolerance and virulence in the peach gummosis fungus Lasiodiplodia theobromae. Front. Microbiol. 12:741842.
- Zhang, Z., Henderson, C. and Gurr, S. J. 2004. Blumeria graminis secretes an extracellular catalase during infection of barley: potential role in suppression of host defence. Mol. Plant Pathol. 5:537-547.
- Zheng, D., Zhang, S., Zhou, X., Wang, C., Xiang, P., Zheng, Q. and Xu, J.-R. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE 7:e49495.
- Zheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z. and Liu, J. 2020. A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environ Microbiol. 22:5309-5326.
- Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12:414-420. https://doi.org/10.1016/j.pbi.2009.06.003
- Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8:353-360. https://doi.org/10.1016/j.pbi.2005.05.004