Acknowledgement
The present study was supported by a grant from the Biomedical Research Institute Grant (202302240001), Pusan National University Hospital.
References
- Zmora N, Suez J and Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16, 35-56 https://doi.org/10.1038/s41575-018-0061-2
- Yang JY and Kweon MN (2016) The gut microbiota: a key regulator of metabolic diseases. BMB Rep 49, 536-541 https://doi.org/10.5483/BMBRep.2016.49.10.144
- Ramakrishna BS (2013) Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 28 Suppl 4, 9-17 https://doi.org/10.1111/jgh.12294
- Wang L, Wang S, Zhang Q, He C, Fu C and Wei Q (2022) The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed 3, 30
- De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84-96 https://doi.org/10.1016/j.cell.2013.12.016
- Zarour HM (2022) Microbiome-derived metabolites counteract tumor-induced immunosuppression and boost immune checkpoint blockade. Cell Metab 34, 1903-1905 https://doi.org/10.1016/j.cmet.2022.11.010
- Jeong K, Nguyen V and Kim J (2012) Human milk oligosaccharides: the novel modulator of intestinal microbiota. BMB Rep 45, 433-441 https://doi.org/10.5483/BMBRep.2012.45.8.168
- Zhai S, Qin S, Li L, Zhu L, Zou Z and Wang L (2019) Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice. FEMS Microbiol Lett 366, fnz153
- Clifford MN, King LJ, Kerimi A, Pereira-Caro MG and Williamson G (2022) Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid beta-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 64, 3326-3383 https://doi.org/10.1080/10408398.2022.2131730
- Cryan JF, O'Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99, 1877-2013 https://doi.org/10.1152/physrev.00018.2018
- Rutsch A, Kantsjo JB and Ronchi F (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 11, 604179
- Lavelle A and Sokol H (2020) Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17, 223-237 https://doi.org/10.1038/s41575-019-0258-z
- Franzosa EA, Sirota-Madi A, Avila-Pacheco J et al (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4, 293-305 https://doi.org/10.1038/s41564-018-0306-4
- Dong LN, Wang M, Guo J and Wang JP (2019) Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl) 132, 1610-1614 https://doi.org/10.1097/CM9.0000000000000290
- Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI and Martinez JA (2019) Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr 10, S17-S30 https://doi.org/10.1093/advances/nmy078
- Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22, 879-888 https://doi.org/10.1038/nm.4132
- D'Amico D, Andreux PA, Valdes P, Singh A, Rinsch C and Auwerx J (2021) Impact of the natural compound Urolithin A on health, disease, and aging. Trends Mol Med 27, 687-699 https://doi.org/10.1016/j.molmed.2021.04.009
- Um JH and Yun J (2017) Emerging role of mitophagy in human diseases and physiology. BMB Rep 50, 299-307 https://doi.org/10.5483/BMBRep.2017.50.6.056
- Park W, Wei S, Kim BS et al (2023) Diversity and complexity of cell death: a historical review. Exp Mol Med 55, 1573-1594 https://doi.org/10.1038/s12276-023-01078-x
- Drummond MJ, Addison O, Brunker L et al (2014) Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 69, 1040-1048 https://doi.org/10.1093/gerona/glu004
- Liu S, D'Amico D, Shankland E et al (2022) Effect of Urolithin A supplementation on muscle endurance and mitochondrial health in older adults: a randomized clinical trial. JAMA Netw Open 5, e2144279
- Singh A, D'Amico D, Andreux PA et al (2022) Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med 3, 100633
- Dao T, Green AE, Kim YA et al (2020) Sarcopenia and muscle aging: a brief overview. Endocrinol Metab (Seoul) 35, 716-732 https://doi.org/10.3803/EnM.2020.405
- Andreux PA, Blanco-Bose W, Ryu D et al (2019) The mitophagy activator Urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab 1, 595-603 https://doi.org/10.1038/s42255-019-0073-4
- Nguyen TT, Wei S, Nguyen TH et al (2023) Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 55, 1595-1619 https://doi.org/10.1038/s12276-023-01046-5
- Oh CM, Ryu D, Cho S and Jang Y (2020) Mitochondrial quality control in the heart: new drug targets for cardiovascular disease. Korean Circ J 50, 395-405 https://doi.org/10.4070/kcj.2019.0416
- Savi M, Bocchi L, Mena P et al (2017) In vivo administration of Urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 16, 80
- Gattinoni L, Speiser DE, Lichterfeld M and Bonini C (2017) T memory stem cells in health and disease. Nat Med 23, 18-27 https://doi.org/10.1038/nm.4241
- Denk D, Petrocelli V, Conche C et al (2022) Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy. Immunity 55, 2059-2073 e2058
- Casedas G, Les F, Choya-Foces C, Hugo M and Lopez V (2020) The metabolite Urolithin-A ameliorates oxidative stress in neuro-2a cells, becoming a potential neuroprotective agent. Antioxidants (Basel) 9, 177
- Wu Y, Yuan Q, Ma Y et al (2023) Dietary intervention with the gut microbial metabolite Urolithin A attenuates lipopolysaccharide-induced neuroinflammation and cognitive deficits via the sirt1/acetyl-NF-kappaB signaling pathway. Mol Nutr Food Res 67, e2200401
- Qiu J, Chen Y, Zhuo J et al (2022) Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology 207, 108963
- Gong Z, Huang J, Xu B et al (2019) Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 16, 62
- Cho SI, Jo ER and Song H (2022) Urolithin A attenuates auditory cell senescence by activating mitophagy. Sci Rep 12, 7704
- Fonseca E, Marques CC, Pimenta J et al (2021) Anti-aging effect of Urolithin-A on bovine oocytes in vitro. Animals (Basel) 11, 2048
- Zhang W, Chen JH, Aguilera-Barrantes I et al (2016) Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-alpha-dependent gene expression. Mol Nutr Food Res 60, 2387-2395 https://doi.org/10.1002/mnfr.201600048
- Setchell KD and Clerici C (2010) Equol: pharmacokinetics and biological actions. J Nutr 140, S1363-S1368 https://doi.org/10.3945/jn.109.119784
- Sekikawa A, Ihara M, Lopez O et al (2019) Effect of S-equol and soy isoflavones on heart and brain. Curr Cardiol Rev 15, 114-135 https://doi.org/10.2174/1573403X15666181205104717
- Lephart ED (2016) Skin aging and oxidative stress: equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev 31, 36-54 https://doi.org/10.1016/j.arr.2016.08.001
- Nishimura Y, Mabuchi K, Takano A et al (2017) S-equol exerts estradiol-like anorectic action with minimal stimulation of estrogen receptor-alpha in ovariectomized rats. Front Endocrinol (Lausanne) 8, 281
- Lu Z, Zhou R, Kong Y et al (2016) S-equol, a secondary metabolite of natural anticancer isoflavone daidzein, inhibits prostate cancer growth in vitro and in vivo, though activating the Akt/FOXO3a pathway. Curr Cancer Drug Targets 16, 455-465 https://doi.org/10.2174/1568009616666151207105720
- Johnson SL, Park HY, Vattem DA, Grammas P, Ma H and Seeram NP (2020) Equol, a blood-brain barrier permeable gut microbial metabolite of dietary isoflavone daidzein, exhibits neuroprotective effects against neurotoxins induced toxicity in human neuroblastoma SH-SY5Y cells and caenorhabditis elegans. Plant Foods Hum Nutr 75, 512-517 https://doi.org/10.1007/s11130-020-00840-0
- Zuo LS, Tang XY, Xiong F et al (2021) Isoflavone biomarkers are inversely associated with atherosclerosis progression in adults: a prospective study. Am J Clin Nutr 114, 203-213 https://doi.org/10.1093/ajcn/nqab008
- Chuang HL, Chiu CC, Lo C et al (2022) Circulating gut microbiota-related metabolites influence endothelium plaque lesion formation in ApoE knockout rats. PLoS One 17, e0264934
- Takeda T and Chiba Y (2022) Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: an open-label pilot study. Neuropsychopharmacol Rep 42, 127-134 https://doi.org/10.1002/npr2.12234
- Blake C, Fabick KM, Setchell KD, Lund TD and Lephart ED (2011) Neuromodulation by soy diets or equol: antidepressive & anti-obesity-like influences, age- & hormone-dependent effects. BMC Neurosci 12, 28
- Bax EN, Cochran KE, Mao J, Wiedmeyer CE and Rosenfeld CS (2019) Opposing effects of S-equol supplementation on metabolic and behavioral parameters in mice fed a high-fat diet. Nutr Res 64, 39-48 https://doi.org/10.1016/j.nutres.2018.12.008
- Johnson SL, Kirk RD, DaSilva NA, Ma H, Seeram NP and Bertin MJ (2019) Polyphenol microbial metabolites exhibit gut and blood-brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites 9, 78
- Yang F and Chen Y (2023) Urinary phytoestrogens and the risk of uterine leiomyomata in US women. BMC Womens Health 23, 261
- Brown NM, Lindley SL, Witte DP and Setchell KD (2011) Impact of perinatal exposure to equol enantiomers on reproductive development in rodents. Reprod Toxicol 32, 33-42 https://doi.org/10.1016/j.reprotox.2011.05.008
- Mahalingam S, Gao L, Gonnering M, Helferich W and Flaws JA (2016) Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro. Toxicol Appl Pharmacol 295, 47-55 https://doi.org/10.1016/j.taap.2016.02.009
- Haudum C, Lindheim L, Ascani A et al (2020) Impact of short-term isoflavone intervention in polycystic ovary syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients 12, 1622
- Li X, Hong J, Wang Y, Pei M, Wang L and Gong Z (2021) Trimethylamine-N-oxide pathway: a potential target for the treatment of MAFLD. Front Mol Biosci 8, 733507
- Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA and Solas M (2018) Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10, 1398
- Treberg JR and Driedzic WR (2002) Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance. J Exp Zool 293, 39-45 https://doi.org/10.1002/jez.10109
- Geng J, Yang C, Wang B et al (2018) Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 97, 941-947 https://doi.org/10.1016/j.biopha.2017.11.016
- Arrona Cardoza P, Spillane MB and Morales Marroquin E (2022) Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 80, 271-281 https://doi.org/10.1093/nutrit/nuab022
- Buawangpong N, Pinyopornpanish K, Siri-Angkul N, Chattipakorn N and Chattipakorn SC (2022) The role of trimethylamine-N-oxide in the development of Alzheimer's disease. J Cell Physiol 237, 1661-1685 https://doi.org/10.1002/jcp.30646
- Schugar RC, Shih DM, Warrier M et al (2017) The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 19, 2451-2461 https://doi.org/10.1016/j.celrep.2017.05.077
- Chen S, Henderson A, Petriello MC et al (2019) Trimethylamine N-oxide binds and activates perk to promote metabolic dysfunction. Cell Metab 30, 1141-1151 e1145
- Annunziata G, Ciampaglia R, Capo X et al (2021) Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomed Pharmacother 143, 112171
- Eyupoglu ND, Caliskan Guzelce E, Acikgoz A et al (2019) Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf) 91, 810-815 https://doi.org/10.1111/cen.14101
- Wang H, Rong X, Zhao G et al (2022) The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab 34, 581-594 e588
- Koh A, Molinaro A, Stahlman M et al (2018) Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947-961 e917
- van Son J, Serlie MJ, Stahlman M, Backhed F, Nieuwdorp M and Aron-Wisnewsky J (2021) Plasma imidazole propionate is positively correlated with blood pressure in overweight and obese humans. Nutrients 13, 2706
- Lin K, Zhu L and Yang L (2022) Gut and obesity/metabolic disease: focus on microbiota metabolites. MedComm 3, e171
- Wu B, Tan L, Wang W, Feng X and Yan D (2022) Imidazole propionate is increased in diabetes and associated with stool consistency. Diabetes Metab Syndr Obes 15, 1715-1724 https://doi.org/10.2147/DMSO.S362715
- Koh A, Manneras-Holm L, Yunn NO et al (2020) Microbial imidazole propionate affects responses to metformin through p38gamma-dependent inhibitory AMPK phosphorylation. Cell Metab 32, 643-653 e644
- Molinaro A, Bel Lassen P, Henricsson M et al (2020) Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 11, 5881
- Molinaro A, Nemet I, Bel Lassen P et al (2023) Microbially produced imidazole propionate is associated with heart failure and mortality. JACC Heart Fail 11, 810-821 https://doi.org/10.1016/j.jchf.2023.03.008
- Hua S, Lv B, Qiu Z et al (2023) Microbial metabolites in chronic heart failure and its common comorbidities. EMBO Mol Med 15, e16928
- Raju SC, Molinaro A, Awoyemi A et al (2024) Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med 16, 27
- Kim BR, Yoon JW, Choi H, Kim D, Kang S and Kim JH (2022) Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 55, 175-180 https://doi.org/10.5483/BMBRep.2022.55.4.137
- Ye M, Zhao Y, Wang Y et al (2022) NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat Nanotechnol 17, 880-890 https://doi.org/10.1038/s41565-022-01137-w
- Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D and Kumar M (2019) Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 317, F1255-F1264 https://doi.org/10.1152/ajprenal.00346.2019
- Nguyen TT, Emami F, Yook S et al (2020) Local release of NECA (5'-(N-ethylcarboxamido)adenosine) from implantable polymeric sheets for enhanced islet revascularization in extrahepatic transplantation site. J Control Release 321, 509-518 https://doi.org/10.1016/j.jconrel.2020.02.029
- Liu ZM, Ho SC, Chen YM, Xie YJ, Huang ZG and Ling WH (2016) Research protocol: effect of natural S-equol on blood pressure and vascular function--a six-month randomized controlled trial among equol non-producers of postmenopausal women with prehypertension or untreated stage 1 hypertension. BMC Complement Altern Med 16, 89
- Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montano AR et al (2023) Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines 11, 431
- Tang WHW, Li XS, Wu Y et al (2021) Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J 236, 80-86 https://doi.org/10.1016/j.ahj.2021.01.020
- Brunt VE, Casso AG, Gioscia-Ryan RA et al (2021) Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans. Hypertension 78, 499-511 https://doi.org/10.1161/HYPERTENSIONAHA.120.16895
- Xiong X, Zhou J, Fu Q et al (2022) The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis 21, 60
- Barrea L, Annunziata G, Muscogiuri G et al (2018) Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 10, 1971
- Lemaitre RN, Jensen PN, Wang Z et al (2021) Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes: the cardiovascular health study. JAMA Netw Open 4, e2122844
- Gao J, Yan KT, Wang JX et al (2020) Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci Rep 10, 2639
- Zhou X, Jin M, Liu L, Yu Z, Lu X and Zhang H (2020) Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction. ESC Heart Fail 7, 188-193 https://doi.org/10.1002/ehf2.12552
- Tang WH, Wang Z, Kennedy DJ et al (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116, 448-455 https://doi.org/10.1161/CIRCRESAHA.116.305360
- Wang Z, Peters BA, Bryant M et al (2023) Gut microbiota, circulating inflammatory markers and metabolites, and carotid artery atherosclerosis in HIV infection. Microbiome 11, 119
- Troseid M, Molinaro A, Gelpi M et al (2024) Gut Microbiota alterations and circulating imidazole propionate levels are associated with obstructive coronary artery disease in people with HIV. J Infect Dis 229, 898-907 https://doi.org/10.1093/infdis/jiad604
- Jeong SM, Jin EJ, Wei S et al (2023) The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model. BMB Rep 56, 404-409 https://doi.org/10.5483/BMBRep.2023-0068
- Park SJ, Kim JH, Song MY, Sung YC, Lee SW and Park Y (2017) PD-1 deficiency protects experimental colitis via alteration of gut microbiota. BMB Rep 50, 578-583 https://doi.org/10.5483/BMBRep.2017.50.11.165
- Park H, Park NY and Koh A (2023) Scarring the early-life microbiome: its potential life-long effects on human health and diseases. BMB Rep 56, 469-481 https://doi.org/10.5483/BMBRep.2023-0114
- Lo Sasso G, Ryu D, Mouchiroud L et al (2014) Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS One 9, e102495