DOI QR코드

DOI QR Code

Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging

  • Yan Zhang (Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University) ;
  • Shibo Wei (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Hang Zhang (Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University) ;
  • Yunju Jo (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Jong-Sun Kang (Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University) ;
  • Ki-Tae Ha (Department of Korean Medical Science, School of Korean Medicine, Pusan National University) ;
  • Jongkil Joo (Department of Obstetrics and Gynecology, Pusan National University Hospital) ;
  • Hyun Joo Lee (Department of Obstetrics and Gynecology, Pusan National University Hospital) ;
  • Dongryeol Ryu (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • Received : 2023.10.17
  • Accepted : 2024.03.20
  • Published : 2024.05.31

Abstract

The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions.

Keywords

Acknowledgement

The present study was supported by a grant from the Biomedical Research Institute Grant (202302240001), Pusan National University Hospital.

References

  1. Zmora N, Suez J and Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16, 35-56  https://doi.org/10.1038/s41575-018-0061-2
  2. Yang JY and Kweon MN (2016) The gut microbiota: a key regulator of metabolic diseases. BMB Rep 49, 536-541  https://doi.org/10.5483/BMBRep.2016.49.10.144
  3. Ramakrishna BS (2013) Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol 28 Suppl 4, 9-17  https://doi.org/10.1111/jgh.12294
  4. Wang L, Wang S, Zhang Q, He C, Fu C and Wei Q (2022) The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed 3, 30 
  5. De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84-96  https://doi.org/10.1016/j.cell.2013.12.016
  6. Zarour HM (2022) Microbiome-derived metabolites counteract tumor-induced immunosuppression and boost immune checkpoint blockade. Cell Metab 34, 1903-1905  https://doi.org/10.1016/j.cmet.2022.11.010
  7. Jeong K, Nguyen V and Kim J (2012) Human milk oligosaccharides: the novel modulator of intestinal microbiota. BMB Rep 45, 433-441  https://doi.org/10.5483/BMBRep.2012.45.8.168
  8. Zhai S, Qin S, Li L, Zhu L, Zou Z and Wang L (2019) Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice. FEMS Microbiol Lett 366, fnz153 
  9. Clifford MN, King LJ, Kerimi A, Pereira-Caro MG and Williamson G (2022) Metabolism of phenolics in coffee and plant-based foods by canonical pathways: an assessment of the role of fatty acid beta-oxidation to generate biologically-active and -inactive intermediates. Crit Rev Food Sci Nutr 64, 3326-3383  https://doi.org/10.1080/10408398.2022.2131730
  10. Cryan JF, O'Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99, 1877-2013  https://doi.org/10.1152/physrev.00018.2018
  11. Rutsch A, Kantsjo JB and Ronchi F (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 11, 604179 
  12. Lavelle A and Sokol H (2020) Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17, 223-237  https://doi.org/10.1038/s41575-019-0258-z
  13. Franzosa EA, Sirota-Madi A, Avila-Pacheco J et al (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4, 293-305  https://doi.org/10.1038/s41564-018-0306-4
  14. Dong LN, Wang M, Guo J and Wang JP (2019) Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl) 132, 1610-1614  https://doi.org/10.1097/CM9.0000000000000290
  15. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI and Martinez JA (2019) Diet, gut microbiota, and obesity: links with host genetics and epigenetics and potential applications. Adv Nutr 10, S17-S30  https://doi.org/10.1093/advances/nmy078
  16. Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22, 879-888  https://doi.org/10.1038/nm.4132
  17. D'Amico D, Andreux PA, Valdes P, Singh A, Rinsch C and Auwerx J (2021) Impact of the natural compound Urolithin A on health, disease, and aging. Trends Mol Med 27, 687-699  https://doi.org/10.1016/j.molmed.2021.04.009
  18. Um JH and Yun J (2017) Emerging role of mitophagy in human diseases and physiology. BMB Rep 50, 299-307  https://doi.org/10.5483/BMBRep.2017.50.6.056
  19. Park W, Wei S, Kim BS et al (2023) Diversity and complexity of cell death: a historical review. Exp Mol Med 55, 1573-1594  https://doi.org/10.1038/s12276-023-01078-x
  20. Drummond MJ, Addison O, Brunker L et al (2014) Downregulation of E3 ubiquitin ligases and mitophagy-related genes in skeletal muscle of physically inactive, frail older women: a cross-sectional comparison. J Gerontol A Biol Sci Med Sci 69, 1040-1048  https://doi.org/10.1093/gerona/glu004
  21. Liu S, D'Amico D, Shankland E et al (2022) Effect of Urolithin A supplementation on muscle endurance and mitochondrial health in older adults: a randomized clinical trial. JAMA Netw Open 5, e2144279 
  22. Singh A, D'Amico D, Andreux PA et al (2022) Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med 3, 100633 
  23. Dao T, Green AE, Kim YA et al (2020) Sarcopenia and muscle aging: a brief overview. Endocrinol Metab (Seoul) 35, 716-732  https://doi.org/10.3803/EnM.2020.405
  24. Andreux PA, Blanco-Bose W, Ryu D et al (2019) The mitophagy activator Urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nat Metab 1, 595-603  https://doi.org/10.1038/s42255-019-0073-4
  25. Nguyen TT, Wei S, Nguyen TH et al (2023) Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 55, 1595-1619  https://doi.org/10.1038/s12276-023-01046-5
  26. Oh CM, Ryu D, Cho S and Jang Y (2020) Mitochondrial quality control in the heart: new drug targets for cardiovascular disease. Korean Circ J 50, 395-405  https://doi.org/10.4070/kcj.2019.0416
  27. Savi M, Bocchi L, Mena P et al (2017) In vivo administration of Urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol 16, 80 
  28. Gattinoni L, Speiser DE, Lichterfeld M and Bonini C (2017) T memory stem cells in health and disease. Nat Med 23, 18-27  https://doi.org/10.1038/nm.4241
  29. Denk D, Petrocelli V, Conche C et al (2022) Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy. Immunity 55, 2059-2073 e2058 
  30. Casedas G, Les F, Choya-Foces C, Hugo M and Lopez V (2020) The metabolite Urolithin-A ameliorates oxidative stress in neuro-2a cells, becoming a potential neuroprotective agent. Antioxidants (Basel) 9, 177 
  31. Wu Y, Yuan Q, Ma Y et al (2023) Dietary intervention with the gut microbial metabolite Urolithin A attenuates lipopolysaccharide-induced neuroinflammation and cognitive deficits via the sirt1/acetyl-NF-kappaB signaling pathway. Mol Nutr Food Res 67, e2200401 
  32. Qiu J, Chen Y, Zhuo J et al (2022) Urolithin A promotes mitophagy and suppresses NLRP3 inflammasome activation in lipopolysaccharide-induced BV2 microglial cells and MPTP-induced Parkinson's disease model. Neuropharmacology 207, 108963 
  33. Gong Z, Huang J, Xu B et al (2019) Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J Neuroinflammation 16, 62 
  34. Cho SI, Jo ER and Song H (2022) Urolithin A attenuates auditory cell senescence by activating mitophagy. Sci Rep 12, 7704 
  35. Fonseca E, Marques CC, Pimenta J et al (2021) Anti-aging effect of Urolithin-A on bovine oocytes in vitro. Animals (Basel) 11, 2048 
  36. Zhang W, Chen JH, Aguilera-Barrantes I et al (2016) Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-alpha-dependent gene expression. Mol Nutr Food Res 60, 2387-2395  https://doi.org/10.1002/mnfr.201600048
  37. Setchell KD and Clerici C (2010) Equol: pharmacokinetics and biological actions. J Nutr 140, S1363-S1368  https://doi.org/10.3945/jn.109.119784
  38. Sekikawa A, Ihara M, Lopez O et al (2019) Effect of S-equol and soy isoflavones on heart and brain. Curr Cardiol Rev 15, 114-135  https://doi.org/10.2174/1573403X15666181205104717
  39. Lephart ED (2016) Skin aging and oxidative stress: equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev 31, 36-54  https://doi.org/10.1016/j.arr.2016.08.001
  40. Nishimura Y, Mabuchi K, Takano A et al (2017) S-equol exerts estradiol-like anorectic action with minimal stimulation of estrogen receptor-alpha in ovariectomized rats. Front Endocrinol (Lausanne) 8, 281 
  41. Lu Z, Zhou R, Kong Y et al (2016) S-equol, a secondary metabolite of natural anticancer isoflavone daidzein, inhibits prostate cancer growth in vitro and in vivo, though activating the Akt/FOXO3a pathway. Curr Cancer Drug Targets 16, 455-465  https://doi.org/10.2174/1568009616666151207105720
  42. Johnson SL, Park HY, Vattem DA, Grammas P, Ma H and Seeram NP (2020) Equol, a blood-brain barrier permeable gut microbial metabolite of dietary isoflavone daidzein, exhibits neuroprotective effects against neurotoxins induced toxicity in human neuroblastoma SH-SY5Y cells and caenorhabditis elegans. Plant Foods Hum Nutr 75, 512-517  https://doi.org/10.1007/s11130-020-00840-0
  43. Zuo LS, Tang XY, Xiong F et al (2021) Isoflavone biomarkers are inversely associated with atherosclerosis progression in adults: a prospective study. Am J Clin Nutr 114, 203-213  https://doi.org/10.1093/ajcn/nqab008
  44. Chuang HL, Chiu CC, Lo C et al (2022) Circulating gut microbiota-related metabolites influence endothelium plaque lesion formation in ApoE knockout rats. PLoS One 17, e0264934 
  45. Takeda T and Chiba Y (2022) Evaluation of a natural S-equol supplement in treating premenstrual symptoms and the effect of the gut microbiota: an open-label pilot study. Neuropsychopharmacol Rep 42, 127-134  https://doi.org/10.1002/npr2.12234
  46. Blake C, Fabick KM, Setchell KD, Lund TD and Lephart ED (2011) Neuromodulation by soy diets or equol: antidepressive & anti-obesity-like influences, age- & hormone-dependent effects. BMC Neurosci 12, 28 
  47. Bax EN, Cochran KE, Mao J, Wiedmeyer CE and Rosenfeld CS (2019) Opposing effects of S-equol supplementation on metabolic and behavioral parameters in mice fed a high-fat diet. Nutr Res 64, 39-48  https://doi.org/10.1016/j.nutres.2018.12.008
  48. Johnson SL, Kirk RD, DaSilva NA, Ma H, Seeram NP and Bertin MJ (2019) Polyphenol microbial metabolites exhibit gut and blood-brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites 9, 78 
  49. Yang F and Chen Y (2023) Urinary phytoestrogens and the risk of uterine leiomyomata in US women. BMC Womens Health 23, 261 
  50. Brown NM, Lindley SL, Witte DP and Setchell KD (2011) Impact of perinatal exposure to equol enantiomers on reproductive development in rodents. Reprod Toxicol 32, 33-42  https://doi.org/10.1016/j.reprotox.2011.05.008
  51. Mahalingam S, Gao L, Gonnering M, Helferich W and Flaws JA (2016) Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro. Toxicol Appl Pharmacol 295, 47-55  https://doi.org/10.1016/j.taap.2016.02.009
  52. Haudum C, Lindheim L, Ascani A et al (2020) Impact of short-term isoflavone intervention in polycystic ovary syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients 12, 1622 
  53. Li X, Hong J, Wang Y, Pei M, Wang L and Gong Z (2021) Trimethylamine-N-oxide pathway: a potential target for the treatment of MAFLD. Front Mol Biosci 8, 733507 
  54. Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA and Solas M (2018) Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10, 1398 
  55. Treberg JR and Driedzic WR (2002) Elevated levels of trimethylamine oxide in deep-sea fish: evidence for synthesis and intertissue physiological importance. J Exp Zool 293, 39-45  https://doi.org/10.1002/jez.10109
  56. Geng J, Yang C, Wang B et al (2018) Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 97, 941-947  https://doi.org/10.1016/j.biopha.2017.11.016
  57. Arrona Cardoza P, Spillane MB and Morales Marroquin E (2022) Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role? Nutr Rev 80, 271-281  https://doi.org/10.1093/nutrit/nuab022
  58. Buawangpong N, Pinyopornpanish K, Siri-Angkul N, Chattipakorn N and Chattipakorn SC (2022) The role of trimethylamine-N-oxide in the development of Alzheimer's disease. J Cell Physiol 237, 1661-1685  https://doi.org/10.1002/jcp.30646
  59. Schugar RC, Shih DM, Warrier M et al (2017) The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 19, 2451-2461  https://doi.org/10.1016/j.celrep.2017.05.077
  60. Chen S, Henderson A, Petriello MC et al (2019) Trimethylamine N-oxide binds and activates perk to promote metabolic dysfunction. Cell Metab 30, 1141-1151 e1145 
  61. Annunziata G, Ciampaglia R, Capo X et al (2021) Polycystic ovary syndrome and cardiovascular risk. Could trimethylamine N-oxide (TMAO) be a major player? A potential upgrade forward in the DOGMA theory. Biomed Pharmacother 143, 112171 
  62. Eyupoglu ND, Caliskan Guzelce E, Acikgoz A et al (2019) Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol (Oxf) 91, 810-815  https://doi.org/10.1111/cen.14101
  63. Wang H, Rong X, Zhao G et al (2022) The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab 34, 581-594 e588 
  64. Koh A, Molinaro A, Stahlman M et al (2018) Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947-961 e917 
  65. van Son J, Serlie MJ, Stahlman M, Backhed F, Nieuwdorp M and Aron-Wisnewsky J (2021) Plasma imidazole propionate is positively correlated with blood pressure in overweight and obese humans. Nutrients 13, 2706 
  66. Lin K, Zhu L and Yang L (2022) Gut and obesity/metabolic disease: focus on microbiota metabolites. MedComm 3, e171 
  67. Wu B, Tan L, Wang W, Feng X and Yan D (2022) Imidazole propionate is increased in diabetes and associated with stool consistency. Diabetes Metab Syndr Obes 15, 1715-1724  https://doi.org/10.2147/DMSO.S362715
  68. Koh A, Manneras-Holm L, Yunn NO et al (2020) Microbial imidazole propionate affects responses to metformin through p38gamma-dependent inhibitory AMPK phosphorylation. Cell Metab 32, 643-653 e644 
  69. Molinaro A, Bel Lassen P, Henricsson M et al (2020) Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nat Commun 11, 5881 
  70. Molinaro A, Nemet I, Bel Lassen P et al (2023) Microbially produced imidazole propionate is associated with heart failure and mortality. JACC Heart Fail 11, 810-821  https://doi.org/10.1016/j.jchf.2023.03.008
  71. Hua S, Lv B, Qiu Z et al (2023) Microbial metabolites in chronic heart failure and its common comorbidities. EMBO Mol Med 15, e16928 
  72. Raju SC, Molinaro A, Awoyemi A et al (2024) Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med 16, 27 
  73. Kim BR, Yoon JW, Choi H, Kim D, Kang S and Kim JH (2022) Application of periostin peptide-decorated self-assembled protein cage nanoparticles for therapeutic angiogenesis. BMB Rep 55, 175-180  https://doi.org/10.5483/BMBRep.2022.55.4.137
  74. Ye M, Zhao Y, Wang Y et al (2022) NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat Nanotechnol 17, 880-890  https://doi.org/10.1038/s41565-022-01137-w
  75. Zou D, Ganugula R, Arora M, Nabity MB, Sheikh-Hamad D and Kumar M (2019) Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. Am J Physiol Renal Physiol 317, F1255-F1264  https://doi.org/10.1152/ajprenal.00346.2019
  76. Nguyen TT, Emami F, Yook S et al (2020) Local release of NECA (5'-(N-ethylcarboxamido)adenosine) from implantable polymeric sheets for enhanced islet revascularization in extrahepatic transplantation site. J Control Release 321, 509-518  https://doi.org/10.1016/j.jconrel.2020.02.029
  77. Liu ZM, Ho SC, Chen YM, Xie YJ, Huang ZG and Ling WH (2016) Research protocol: effect of natural S-equol on blood pressure and vascular function--a six-month randomized controlled trial among equol non-producers of postmenopausal women with prehypertension or untreated stage 1 hypertension. BMC Complement Altern Med 16, 89 
  78. Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montano AR et al (2023) Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines 11, 431 
  79. Tang WHW, Li XS, Wu Y et al (2021) Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J 236, 80-86  https://doi.org/10.1016/j.ahj.2021.01.020
  80. Brunt VE, Casso AG, Gioscia-Ryan RA et al (2021) Gut microbiome-derived metabolite trimethylamine N-oxide induces aortic stiffening and increases systolic blood pressure with aging in mice and humans. Hypertension 78, 499-511  https://doi.org/10.1161/HYPERTENSIONAHA.120.16895
  81. Xiong X, Zhou J, Fu Q et al (2022) The associations between TMAO-related metabolites and blood lipids and the potential impact of rosuvastatin therapy. Lipids Health Dis 21, 60 
  82. Barrea L, Annunziata G, Muscogiuri G et al (2018) Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 10, 1971 
  83. Lemaitre RN, Jensen PN, Wang Z et al (2021) Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes: the cardiovascular health study. JAMA Netw Open 4, e2122844 
  84. Gao J, Yan KT, Wang JX et al (2020) Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci Rep 10, 2639 
  85. Zhou X, Jin M, Liu L, Yu Z, Lu X and Zhang H (2020) Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction. ESC Heart Fail 7, 188-193  https://doi.org/10.1002/ehf2.12552
  86. Tang WH, Wang Z, Kennedy DJ et al (2015) Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 116, 448-455  https://doi.org/10.1161/CIRCRESAHA.116.305360
  87. Wang Z, Peters BA, Bryant M et al (2023) Gut microbiota, circulating inflammatory markers and metabolites, and carotid artery atherosclerosis in HIV infection. Microbiome 11, 119 
  88. Troseid M, Molinaro A, Gelpi M et al (2024) Gut Microbiota alterations and circulating imidazole propionate levels are associated with obstructive coronary artery disease in people with HIV. J Infect Dis 229, 898-907  https://doi.org/10.1093/infdis/jiad604
  89. Jeong SM, Jin EJ, Wei S et al (2023) The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model. BMB Rep 56, 404-409  https://doi.org/10.5483/BMBRep.2023-0068
  90. Park SJ, Kim JH, Song MY, Sung YC, Lee SW and Park Y (2017) PD-1 deficiency protects experimental colitis via alteration of gut microbiota. BMB Rep 50, 578-583  https://doi.org/10.5483/BMBRep.2017.50.11.165
  91. Park H, Park NY and Koh A (2023) Scarring the early-life microbiome: its potential life-long effects on human health and diseases. BMB Rep 56, 469-481  https://doi.org/10.5483/BMBRep.2023-0114
  92. Lo Sasso G, Ryu D, Mouchiroud L et al (2014) Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS One 9, e102495