References
- Abo-Dhab, S.M., Abouelregl, A.E. and Marin, M. (2020), "Generalized thermoelastic functionally graded on a thin slim strip non-gaussian laser beam", Symmetry, 12(7), 1094. http://doi.org/10.3390/sym12071094.
- Ailawalia, P., Sachdeva, S.K. and Pathania, D.S. (2015), "Plane strain deformation in a thermoelastic microelongated solid with internal heat source", Int. J. Appl. Mech. Eng., 20(4), 717-731. https://doi.org/10.1515/ijame-2015-0047
- Boley, B.A. and Weiner J.H. (1960), Theory of Thermal Stresses, John Wiley and Sons, New York.
- Dhaliwal, R.S. and Singh, A. (1980), Dynamical Coupled Thermoelasticity, Hindustan Publishers, Delhi.
- El-Sapa, S., Alhejaili, W., Lotfy, Kh. and El-Bary, A.A. (2023), "Excited non-local microelongated semiconductor layer thermal-optical mechanical waves affected by rotational field", Crystal., 13(1), 116. https://doi.org/10.3390/cryst13010116.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923. https://doi.org/10.1512/iumj.1966.15.15060
- Eringen, A.C. (1971), "Micropolar elastic solids with stretch", Ari Kitabevi Matbaasi, 24, 1-18.
- Eringen, A.C. (1984), "Plane waves in nonlocal micropolar elasticity", Int. J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5.
- Eringen, A.C. (1990a), "Theory of thermo-microstretch elastic solids", Int. J. Eng. Sci., 28(12), 1291-1301. https://doi.org/10.1016/0020-7225(90)90076-U.
- Eringen, A.C. (1990b), "Theory of thermo-microstretch fluids and bubbly liquids", Int. J. Eng. Sci., 28, 133-143. https://doi.org/10.1016/0020-7225(90)90063-O.
- Eringen, A.C. (1999), Microcontinuum Field Theories, I, Foundations and Solids, Springer-Verlag, New York.
- Green, A.E. and Lindsay, K. (1972), "Thermoelasticity", J. Elast., 2(1), 1-7. https://doi.org/10.1007/BF00045689
- Honing, G. and Hirdes, U. (1984), "A method for the numerical inversion of Laplace transform", J. Comput. And Appl. Math., 10, 113-132. https://doi.org/10.1016/0377-0427(84)90075-X.
- Ismail, G.M., Gepreel, K., Lotfy, Kh., Mahdy, A.M.S., El-Bary, A. and Saeed, A.M. (2022), "Influence of variable thermal conductivity on thermal-plasma-elastic waves of excited microelongated semiconductor", Alex. Eng. J., 61(12), 12271-12282. https://doi.org/10.1016/j.aej.2022.06.024.
- Kiris, A. and Inan, E. (2005), "Eshelby tensors for a spherical inclusion in microelongated elastic fields", Int. J. Eng. Sci., 43(1-2), 49-58. https://doi.org/10.1016/j.ijengsci.2004.06.002.
- Lord, H.W. and Shulman, Y. (1967), "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solid., 15(5), 299-309. https://doi.org/10.1016/0022-5096(67)90024-5.
- Lotfy, Kh. (2022), "Thermo-mechanical waves of excited microelongated semiconductor layer during photothermal transport processes", Wave. Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2022.2157067.
- Marin, M., Florea, O. and Mahmoud, S.R. (2015), "A result regarding the seismic dislocations in microstretch thermoelastic bodies", Math. Prob. Eng., 2015, Article ID 850261. https://doi.org/10.1155/2015/850261.
- Othman, M.I., Atwa, S.Y., Eraki, E.E.M. and Ismail, M.F. (2022), "Dual-phase-lag model on microelongated thermoelastic rotating medium", J. Eng. Therm. Sci., 2(1), 13-26. https://doi.org/10.21595/jets.2022.22597
- Othman, M.I., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/sem.2020.73.6.621.
- Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1986), Numerical Recipes, Cambridge University Press.
- Raddadi, M.H., El-Sapa, S., Elamin, M.A., Chtioui, H., Chteoui, R., El-Bary, Alaa, A. and Lotfy, Kh. (2024), "Optoelectronic-thermomagnetic effect of a microelongated non-local rotating semiconductor heated by pulsed laser with varying thermal conductivity", Open Phys., 22, 20230145. https://doi.org/10.1515/phys-2023-0145.
- Sachdeva, S.K. and Ailawalia, P. (2015), "Plane strain deformation in thermoelastic microelogated solid", Civil Environ. Res., 7(2), 92-98.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2014). "Plane waves and fundamental solution in an electromicrostretch elastic solids", Afrika Matematika, 25, 483-497. https://doi.org/10.1007/s13370-013-0161-7
- Sharma, S. and Khator, S. (2021), "Power generation planning with reserve dispatch and weather uncertainties including penetration of renewable sources", Int. J. Smart Grid Clean Energy, 10(4), 292-303. https://doi.org/10.12720/sgce.10.4.292-303.
- Sharma, S. and Khator, S. (2022), "Micro-Grid planning with aggregator's role in the renewable inclusive prosumer market", J. Power Energy Eng., 10(4), 47-62. https://doi.org/10.4236/jpee.2022.104004.
- Sharma, S., Sharma, K. and Bhargava, R.R. (2013a with 2013), "Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids", Mater. Phys. Mech., 17(2), 93-110.
- Shaw, S. and Mukhopadhyay, B. (2012), "Periodically varying heat source response in a functionally graded microelongated medium", Appl. Math. Comput., 218(11), 6304-6313. https://doi.org/10.1016/j.amc.2011.11.109.
- Shaw, S. and Mukhopadhyay, B. (2013), "Moving heat source response in a thermoelastic microelongated solid", J. Eng. Phys. Thermophys., 86(3), 716-722. https://doi.org/10.1007/s10891-013-0887-y.
- Tayel, I.M., Lotfy, Kh., El-Bary, A.A., Alebraheem, J. and Mohammed, M.A. (2023), "Microelongated thermo-elastodiffusive waves of excited semiconductor material under laser pulses impact", Math., 11(7), 1627. https://doi.org/10.3390/math11071627.