참고문헌
- Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Periodica Polytechnica Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
- Avsar, A.L. and Sahin, M. (2016), "Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate", Smart Struct. Syst., 18(2), 249-265. https://doi.org/10.12989/sss.2016.18.2.249.
- Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
- Boley, B.A. and Weiner, J.J (1960), Theory of Thermal Stresses, John Wiley, New York.
- Bouazza, M. and Adda-Bedia, E.A. (2013), "Elastic stability of functionally graded rectangular plates under mechanical and thermal loadings", Acad. J., Scientif. Res. Essay., 8(39), 1933-1943. https://doi.org/10.5897/SRE11.251.
- Bouazza, M. and Zenkour, A.M. (2021), "Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory", Wave. Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2021.1909173.
- Bouazza, M., Amara, K. and Benseddiq, N. (2017), "Mechanical buckling analysis of functionally graded plates using a new refined theory", Jordan J. Civil Eng., 11(1), 64.
- Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Bedia, E. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989gae.2019.18.5.555. https://doi.org/10.12989gae.2019.18.5.555
- Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
- Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2016), "Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation", Int. J. Comput. Meth. Eng. Sci. Mech., 17(5-6), 362-373. https://doi.org/10.1080/15502287.2016.1231239.
- Bouazza, M., Benseddiq, N. and Zenkour, A.M. (2019), "Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory", J. Therm. Stress., 42(3), 332-340. https://doi.org/10.1080/01495739.2018.1461042.
- Bouazza, M., Boucheta, A., Becheri, T. and Benseddiq, N. (2017), "Thermal stability analysis of functionally graded plates using simple refined plate theory", Int. J. Autom. Mech. Eng., 14(1), 4013-4029. https://doi.org/10.15282/ijame.14.1.2017.15.0325.
- Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386.
- Chaudhary, S.K., Kar, V.R. and Shukla, K.K. (2023), "Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations", Adv. Aircraft Spacecraft Sci., 10(2), 127-140. https://doi.org/10.12989/aas.2023.10.2.127.
- Chen, W.J., Lin, P.D. and Chen, L.W. (1991), "Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution", Comput. Struct., 41(4), 637-645. https://doi.org/10.1016/0045-7949(91)90176-M.
- Ebrahimi, F. and Barati, M. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
- Ebrahimi, F., Seyfi, A., Dabbag, H.A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene plateletreinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
- Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2024), "Hygrothermal vibration of FG nanobeam via nonlocal unknown integral variables secant-tangential shear deformation coupled theory with temperature-dependent material properties", Eur. J. Mech.-A/Solid., 105, 105243. https://doi.org/10.1016/j.euromechsol.2024.105243.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Meth., 19(9), 2250019. https://doi.org/10.1142/S0219876222500190.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2023), "Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties", Geomech. Eng., 33(5), 427-437. https://doi.org/10.12989/gae.2023.33.5.427.
- Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities. Couple. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
- Ganapathi, M. and Touratier, M. (1997), "A study on thermal postbuckling behaviour of laminated composite plates using a shear-flexible finite element", Finite Elem. Anal. Des., 28(2), 115-135. https://doi.org/10.1016/S0168-874X(97)81955-5.
- Ghasemabadian, M.A. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. https://doi.org/10.12989/sem.2016.60.2.271.
- Ghasemabadian, M.A. and Saidi, A.R. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62(6), 675-693. https://doi.org/10.12989/sem.2017.62.6.675.
- Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
- Hussain, M.A. (2014), "Buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) plate", Doctoral Dissertation, National Institute of Technology Rourkela, Odisha, India.
- Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
- Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205. https://doi.org/10.12989/amr.2016.5.4.205.
- Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. IMechE Part C: J. Mech. Eng. Sci., 10, 1-15. https://doi.org/10.1177/0954406218756451.
- Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399.
- Krommer, M., Vetyukov, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
- Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro mechanical loading", Int. J. Solid. Struct., 40(15), 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9.
- Mirzavand, B. and Eslami, M.R. (2011), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta Mechanica, 218, 87-101. https://doi.org/10.1007/s00707-010-0402-x.
- Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
- Nazira, M., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
- Nguyen, T.K., Vo, T.P. and Thai, H.T. (2014), "Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory", Proc. IMechE Part C: J. Mech. Eng. Sci., 228(12), 2110-2131. https://doi.org/10.1177/0954406213516088.
- Rathore, S.S. and Kar, V.R. (2023), "Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect", Struct. Eng. Mech., 84(4), 519-533. https://doi.org/10.12989/sem.2023.86.4.519.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, Florida.
- Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Xiong, Q.L. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. https://doi.org/10.12989/scs.2017.25.2.187.