DOI QR코드

DOI QR Code

Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric

  • Mokhtar Ellali (Smart Structures Laboratory, University of Ain Temouchent-Belhadj Bouchaib) ;
  • Khaled Amara (Department of Civil Engineering, University of Ain Temouchent-Belhadj Bouchaib) ;
  • Mokhtar Bouazza (Department of Civil Engineering, University Tahri Mohamed of Bechar)
  • Received : 2023.07.03
  • Accepted : 2024.01.12
  • Published : 2024.04.25

Abstract

In the present paper, thermal buckling characteristics of functionally graded rectangular plates made of porous material that are integrated with surface-bonded piezoelectric actuators subjected to the combined action of thermal load and constant applied actuator voltage are investigated by utilizing a Navier solution method. The uniform temperature rise loading is considered. Thermomechanical material properties of FGM plates are assumed to be temperature independent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM) which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of stability for the piezoelectric FGM plate are derived based on higher order shear deformation plate theory. Influences of several important parameters on the critical thermal buckling temperature are investigated and discussed in detail.

Keywords

References

  1. Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Periodica Polytechnica Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
  2. Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127.
  3. Avsar, A.L. and Sahin, M. (2016), "Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate", Smart Struct. Syst., 18(2), 249-265. https://doi.org/10.12989/sss.2016.18.2.249.
  4. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
  5. Boley, B.A. and Weiner, J.J (1960), Theory of Thermal Stresses, John Wiley, New York.
  6. Bouazza, M. and Adda-Bedia, E.A. (2013), "Elastic stability of functionally graded rectangular plates under mechanical and thermal loadings", Acad. J., Scientif. Res. Essay., 8(39), 1933-1943. https://doi.org/10.5897/SRE11.251.
  7. Bouazza, M. and Zenkour, A.M. (2021), "Hygrothermal environmental effect on free vibration of laminated plates using nth-order shear deformation theory", Wave. Random Complex Media, 1-17. https://doi.org/10.1080/17455030.2021.1909173.
  8. Bouazza, M., Amara, K. and Benseddiq, N. (2017), "Mechanical buckling analysis of functionally graded plates using a new refined theory", Jordan J. Civil Eng., 11(1), 64.
  9. Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Bedia, E. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989gae.2019.18.5.555. https://doi.org/10.12989gae.2019.18.5.555
  10. Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2019), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
  11. Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2016), "Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation", Int. J. Comput. Meth. Eng. Sci. Mech., 17(5-6), 362-373. https://doi.org/10.1080/15502287.2016.1231239.
  12. Bouazza, M., Benseddiq, N. and Zenkour, A.M. (2019), "Thermal buckling analysis of laminated composite beams using hyperbolic refined shear deformation theory", J. Therm. Stress., 42(3), 332-340. https://doi.org/10.1080/01495739.2018.1461042.
  13. Bouazza, M., Boucheta, A., Becheri, T. and Benseddiq, N. (2017), "Thermal stability analysis of functionally graded plates using simple refined plate theory", Int. J. Autom. Mech. Eng., 14(1), 4013-4029. https://doi.org/10.15282/ijame.14.1.2017.15.0325.
  14. Bourada, M., Tounsi, A., Houari, M.S.A. and Bedia, E.A.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386.
  15. Chaudhary, S.K., Kar, V.R. and Shukla, K.K. (2023), "Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations", Adv. Aircraft Spacecraft Sci., 10(2), 127-140. https://doi.org/10.12989/aas.2023.10.2.127.
  16. Chen, W.J., Lin, P.D. and Chen, L.W. (1991), "Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution", Comput. Struct., 41(4), 637-645. https://doi.org/10.1016/0045-7949(91)90176-M.
  17. Ebrahimi, F. and Barati, M. (2018), "Surface and flexoelectricity effects on size-dependent thermal stability analysis of smart piezoelectric nanoplates", Struct. Eng. Mech., 67(2), 143-153. https://doi.org/10.12989/sem.2018.67.2.143.
  18. Ebrahimi, F., Seyfi, A., Dabbag, H.A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene plateletreinforced composite shells", Struct. Eng. Mech., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.
  19. Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
  20. Ellali, M., Bouazza, M. and Zenkour, A.M. (2024), "Hygrothermal vibration of FG nanobeam via nonlocal unknown integral variables secant-tangential shear deformation coupled theory with temperature-dependent material properties", Eur. J. Mech.-A/Solid., 105, 105243. https://doi.org/10.1016/j.euromechsol.2024.105243.
  21. Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Meth., 19(9), 2250019. https://doi.org/10.1142/S0219876222500190.
  22. Ellali, M., Bouazza, M. and Zenkour, A.M. (2023), "Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties", Geomech. Eng., 33(5), 427-437. https://doi.org/10.12989/gae.2023.33.5.427.
  23. Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities. Couple. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.
  24. Ganapathi, M. and Touratier, M. (1997), "A study on thermal postbuckling behaviour of laminated composite plates using a shear-flexible finite element", Finite Elem. Anal. Des., 28(2), 115-135. https://doi.org/10.1016/S0168-874X(97)81955-5.
  25. Ghasemabadian, M.A. and Kadkhodayan, M. (2016), "Investigation of buckling behavior of functionally graded piezoelectric (FGP) rectangular plates under open and closed circuit conditions", Struct. Eng. Mech., 60(2), 271-299. https://doi.org/10.12989/sem.2016.60.2.271.
  26. Ghasemabadian, M.A. and Saidi, A.R. (2017), "Stability analysis of transversely isotropic laminated Mindlin plates with piezoelectric layers using a Levy-type solution", Struct. Eng. Mech., 62(6), 675-693. https://doi.org/10.12989/sem.2017.62.6.675.
  27. Guessas, H., Zidour, M., Meradjah, M. and Tounsi, A. (2018), "The critical buckling load of reinforced nanocomposite porous plates", Struct. Eng. Mech., 67(2), 115-123. https://doi.org/10.12989/sem.2018.67.2.115.
  28. Hussain, M.A. (2014), "Buckling analysis of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) plate", Doctoral Dissertation, National Institute of Technology Rourkela, Odisha, India.
  29. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Therm. Stress., 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
  30. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011.
  31. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205. https://doi.org/10.12989/amr.2016.5.4.205.
  32. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proc. IMechE Part C: J. Mech. Eng. Sci., 10, 1-15. https://doi.org/10.1177/0954406218756451.
  33. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399.
  34. Krommer, M., Vetyukov, Y. and Staudigl, E. (2016), "Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour", Smart Struct. Syst., 18(1), 155-181. https://doi.org/10.12989/sss.2016.18.1.155.
  35. Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro mechanical loading", Int. J. Solid. Struct., 40(15), 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9.
  36. Mirzavand, B. and Eslami, M.R. (2011), "A closed-form solution for thermal buckling of piezoelectric FGM rectangular plates with temperature-dependent properties", Acta Mechanica, 218, 87-101. https://doi.org/10.1007/s00707-010-0402-x.
  37. Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15. https://doi.org/10.1016/j.ast.2014.12.001.
  38. Nazira, M., Eltaher, M.A., Mohamed, S.A. and Seddek, L.F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.
  39. Nguyen, T.K., Vo, T.P. and Thai, H.T. (2014), "Vibration and buckling analysis of functionally graded sandwich plates with improved transverse shear stiffness based on the first-order shear deformation theory", Proc. IMechE Part C: J. Mech. Eng. Sci., 228(12), 2110-2131. https://doi.org/10.1177/0954406213516088.
  40. Rathore, S.S. and Kar, V.R. (2023), "Thermoelastic eigenfrequency of pre-twisted FG-sandwich straight/curved blades with rotational effect", Struct. Eng. Mech., 84(4), 519-533. https://doi.org/10.12989/sem.2023.86.4.519.
  41. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, Florida.
  42. Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317.
  43. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  44. Xiong, Q.L. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. https://doi.org/10.12989/scs.2017.25.2.187.