DOI QR코드

DOI QR Code

Multilayered inhomogeneous beam under prescribed angle of twist and displacements: A delamination analysis

  • Victor I. Rizov (Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy)
  • Received : 2023.12.01
  • Accepted : 2024.02.13
  • Published : 2024.04.25

Abstract

The problem considered in this theoretical paper is the delamination of a multilayered inhomogeneous beam structure that has viscoelastic behaviour under angle of twist, horizontal and vertical displacements which vary smoothly with time according to prescribed laws. The cross-section of the beam is a rectangle. The layers are made of different materials which are smoothly inhomogeneous along the length of the beam. The beam under consideration represents statically undetermined structure since it is clamped in its two ends. The problem of the strain energy release rate is solved. For this purpose, the strain energy stored in the beam structure is analyzed. In order to verify the solution obtained, the strain energy release rate is found also analyzing the time-dependent compliances of the beam under prescribed angle of twist and displacements. A parametric investigation is carried-out by applying the solution obtained. Special attention is paid to the effect of the parameters which control the variation of the angle of twist and the displacements with time on the strain energy release rate.

Keywords

References

  1. Al-Shablle, M., Al-Waily, M. and Njim, E.K. (2022), "Analytical evaluation of the influence of adding rubber layers on free vibration of sandwich structure with presence of nano-reinforced composite skinsˮ, Arch. Mater. Sci. Eng., 116(2), 57-70. https://doi.org/10.5604/01.3001.0016.1190. 
  2. Butcher, R.J., Rousseau, C.E. and Tippur, H.V. (1999), "A functionally graded particulate composite: Measurements and failure analysisˮ, Acta. Mater., 47(2), 259-268. https://doi.org/10.1016/S1359-6454(98)00305-X. 
  3. Calim, F.F. (2020), "Vibration analysis of functionally graded Timoshenko beams on Winkler-Pasternak elastic foundationˮ, Iran. J. Sci. Technol. Trans. Civil Eng., 44(3), 901-920. https://doi.org/10.1007/s40996-019-00283-x. 
  4. Calim, F.F. and Cuma, Y.C. (2022), "Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material", Mech. Bas. Des. Struct. Mach., 50(11), 3781-3795. https://doi.org/10.1080/15397734.2020.1822181 
  5. Calim, F.F. and Cuma, Y.C. (2023), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Bas. Des. Struct. Mach., 51(7), 3620-3631. https://doi.org/10.1080/15397734.2021.1931307. 
  6. Chobanian, K.S. (1997), Stresses in Combined Elastic Solids, Science.
  7. Dolgov, N.A. (2005), "Determination of stresses in a two-layer coating", Strength Mater., 37(2), 422-431. https://doi.org/10.1007/s11223-005-0053-7. 
  8. Dolgov, N.A. (2016), "Analytical methods to determine the stress state in the substrate-coating system under mechanical loads", Strength Mater., 48(1), 658-667. https://doi.org/10.1007/s11223-016-9809-5. 
  9. El-Galy, I.M., Saleh, B.I. and Ahmed, M.H. (2019), "Functionally graded materials classifications and development trends from industrial point of viewˮ, SN Appl. Sci., 1, 1378. https://doi.org/10.1007/s42452-019-1413-4 
  10. Gasik, M.M. (2010), "Functionally graded materials: bulk processing techniquesˮ, Int. J. Mater. Prod. Technol., 39(1-2), 20-29. https://doi.org/10.1504/IJMPT.2010.034257. 
  11. Han, X., Xu, Y.G. and Lam, K.Y. (2001), "Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network", Compos. Sci. Technol., 61(10), 1401-1411. https://doi.org/10.1016/S0266-3538(01)00033-1. 
  12. Hedia, H.S., Aldousari, S.M., Abdellatif, A.K. and Fouda, N.A. (2014), "New design of cemented stem using functionally graded materials (FGM)ˮ, Biomed. Mater. Eng., 24(3), 1575-1588. https://doi.org/10.3233/BME-140962. 
  13. Hirai, T. and Chen, L. (1999), "Recent and prospective development of functionally graded materials in Japanˮ, Mater. Sci. Forum, 308-311(4), 509-514. https://doi.org/10.4028/www.scientific.net/MSF.308-311.509. 
  14. Hung, P.T., Phung-Van, P. and Thai, C.H. (2023), "Small scale thermal analysis of piezoelectric-piezomagnetic FG microplates using modified strain gradient theory", Int. J. Mech. Mater. Des., 1-23. https://doi.org/10.1007/s10999-023-09651-y. 
  15. Hung, P.T., Thai, Chen H. and Phung-Van, P. (2023), "Isogeometric bending and free vibration analyses of carbon nanotube-reinforced magneto-electric-elastic microplates using a four variable refined plate theoryˮ, Comput. Struct., 287, 107121. https://doi.org/10.1016/j.compstruc.2023.107121. 
  16. Hutchinson, J.W. and Suo, Z. (1991), "Mixed mode cracking in layered materialsˮ, Adv. Appl. Mech., 29, 63-191. https://doi.org/10.1016/S0065-2156(08)70164-9. 
  17. Mahamood, R.M. and Akinlabi, E.T. (2017), Introduction to Functionally Graded Materials, Functionally Graded Materials. Topics in Mining, Metallurgy and Materials Engineering, Springer, Cham. 
  18. Markworth, A.J., Ramesh, K.S. and Parks, Jr. W.P. (1995), "Review: Modeling studies applied to functionally graded materialsˮ, J. Mater. Sci., 30(3), 2183-2193. https://doi.org/10.1007/BF01184560. 
  19. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (1999), Functionally Graded Materials: Design, Processing and Applications, Kluwer Academic Publishers, Dordrecht/London/Boston. 
  20. Nemat-Allal, M.M., Ata, M.H., Bayoumi, M.R. and Khair-Eldeen, W. (2011), "Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded materialˮ, Mater. Sci. Appl., 2(5), 1708-1718. https://doi.org/10.4236/msa.2011.212228. 
  21. Nguyen, L.B., Nguyen-Xuan, H., Thai, C.H. and Phung-Van P. (2023), "A size-dependent effect of smart functionally graded piezoelectric porous nanoscale platesˮ, Int. J. Mech. Mater. Des., 19(4), 817-830. https://doi.org/10.1007/s10999-023-09660-x. 
  22. Njim, E.K., Al-Waily, M. and Bakhy, S.H. (2021), "A critical review of recent research of free vibration and stability of functionally graded materials of sandwich plate", IOP Conf. Ser.: Mater. Sci. Eng., 1094(1), 012081. https://doi.org/10.1088/1757-899X/1094/1/012081 
  23. Njim, E.K., Bakhy, S.H. and Al-Waily, M. (2021), "Free vibration analysis of imperfect functionally graded sandwich plates: Analytical and experimental investigationˮ, Arch. Mater. Sci. Eng., 111(2), 49-65. https://doi.org/10.5604/01.3001.0015.5805. 
  24. Rizov, V. (2018), "Analysis of cylindrical delamination cracks in multilayered functionally graded nonlinear elastic circular shafts under combined loadsˮ, Frattura ed Integrita Strutturale, 46, 158-177. https://doi.org/10.3211/IGF-ESIS.46.16. 
  25. Rizov, V. (2020), "Influence of the viscoelastic material behaviour on the delamination in multilayered beamˮ, Procedia Struct. Integrity, 25, 88-100. https://doi.org/10.1016/j.prostr.2020.04.013. 
  26. Rizov, V. and Altenbach, H. (2022), "Multi-layered non-linear viscoelastic beams subjected to torsion at a constant speed: A delamination analysisˮ, Eng. Transac., 70, 53-66. https://doi.org/10.24423/EngTrans.1720.20220303. 
  27. Rizov, V.I. (2021), "Delamination analysis of multilayered beams exhibiting creep under torsionˮ, Couple. Syst. Mech., 10, 317-331. https://doi.org/10.12989/csm.2021.10.4.317. 
  28. Rizov, V.I. (2022), "Inhomogeneous beam structures of rectangular cross-section loaded in torsion: A delamination study with considering creep", Procedia Struct. Integrity, 41, 94-102. https://doi.org/10.1016/j.prostr.2022.05.012. 
  29. Rizov, V.I. (2023), "Delamination analysis of inhomogeneous viscoelastic beam of rectangular section subjected to torsionˮ, Couple. Syst. Mech., 12, 69-81. https://doi.org/10.12989/csm.2023.12.1.069. 
  30. Saiyathibrahim, A., Subramaniyan, R. and Dhanapl, P. (2016), "Centrefugally cast functionally graded materials-reviewˮ, International Conference on Systems, Science, Control, Communications, Engineering and Technology, 68-73. 
  31. Shrikantha Rao, S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overviewˮ, Procedia Mater. Sci., 5(1), 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442. 
  32. Toudehdehghan, J., Lim, W., Foo1, K.E., Ma'arof, M.I.N. and Mathews, J. (2017), "A brief review of functionally graded materialsˮ, MATEC Web Conf., 131, 03010. https://doi.org/10.1051/matecconf/201713103010UTP-UMP.