DOI QR코드

DOI QR Code

Analysis of the thermal instability of laminated composite plates

  • H. Mataich (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abdellah University) ;
  • A. El Amrani (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abdellah University) ;
  • B. El Amrani (Laboratory of Mathematics, Modeling and Applied Physics, High Normal School, Sidi Mohamed Ben Abdellah University)
  • 투고 : 2023.04.24
  • 심사 : 2023.12.08
  • 발행 : 2024.04.25

초록

In this paper, we will analyse the thermo-elastic behavior of the plate element of a structure arranged in a climatically aggressive environment (extreme temperature), we use a refined four-variable thick plate theory to take the shear effect into consideration, the proposed theory less computationally expensive and more accurate so that it incorporates the shear effect into the formulation. The plate is assumed to be simply supported on its four edges, so exact (closed-form) solutions are found according to the Navier expansion, and the governing stability equations and associated boundary conditions of the problem are obtained via the virtual works principle. The plate studied ismade of laminated composite materials, so a parametric study is needed to see the effect of different types of parameters and coupling on the critical temperature value causing thermo-elastic instability of the plate and also on the natural frequency of free vibration, as well as for other parameters such as anisotropy, slenderness and aspect ratio of the plate and finally the lamination angle. Numerical results are obtained for specially orthotropic and antisymmetrical plates and are compared with those obtained by othertheoriesin the literature to validate the analysis approach used.

키워드

과제정보

I thank all the pedagogical and administrative staff of Sidi Mohamed Ben Abdellah University, 30040 Fez, Morocco for the pedagogical atmosphere they brought to the research.

참고문헌

  1. Abdoun, F. and Azrar, L. (2020), "Thermal buckling and vibration of laminated composite plates with temperature dependent properties by an asymptotic numerical method", Int. J. Comput. Meth. Eng. Sci. Mech., 21(1), 43-57. https://doi.org/10.1080/15502287.2020.1729899. 
  2. Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Industry, 17(5), 512. https://doi.org/10.1051/meca/2015112. 
  3. A lvarez, J.G., Abramovich, H. and Bisagni, C. (2022), "Vibration-buckling tests on heated composite plates", J. Sound Vib., 536, 117145. https://doi.org/10.1016/j.jsv.2022.117145. 
  4. Barron, R.F. and Barron, B.R. (2011), Design for Thermal Stresses, John Wiley & Sons.
  5. Bouazza, M., Becheri, T., Boucheta, A. and Benseddiq, N. (2016), "Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler-Pasternak elastic foundation", Int. J. Comput. Meth. Eng. Sci. Mech., 17(5-6), 362-373. https://doi.org/10.1080/15502287.2016.1231239. 
  6. Chen, L.W. and Chen, L.Y. (1989), "Thermal buckling behavior of laminated composite plates with temperature-dependent properties", Compos. Struct., 13(4), 275-287. https://doi.org/10.1016/0263-8223(89)90012-3. 
  7. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293. 
  8. Foroutan, K., Shaterzadeh, A. and Ahmadi, H. (2020), "Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells", Appl. Math. Model., 77, 539-553. https://doi.org/10.1016/j.apm.2019.07.062. 
  9. Gutierrez A lvarez, J. and Bisagni, C. (2021), "A study on thermal buckling and mode jumping of metallic and composite plates", Aerosp., 8(2), 56. https://doi.org/10.3390/aerospace8020056. 
  10. Hammed, M.B. and Majeed, W.I. (2019), "Free vibration analysis of laminated composite plates with general boundary elastic supports under initial thermal load", Al-Khwarizmi Eng. J., 15(4), 23-32. https://doi.org/10.22153/kej.2019.09.004. 
  11. Jeyaraj, P. (2013), "Buckling and free vibration behavior of an isotropic plate under nonuniform thermal load", Int. J. Struct. Stab. Dyn., 13(03), 1250071. https://doi.org/10.1142/S021945541250071X. 
  12. Kobayashi, H. and Sonoda, K. (1991), "Vibration and buckling of tapered rectangular plates with two opposite edges simply supported and the other two edges elastically restrained against rotation", J. Sound Vib., 146(2), 323-337. https://doi.org/10.1016/0022-460X(91)90766-D. 
  13. Leissa, A.W. (1987), "A review of laminated composite plate buckling", Appl. Mech. Rev., 40(5), 575-591. https://doi.org/10.1115/1.3149534. 
  14. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. https://doi.org/10.1016/j.compstruct.2020.112806. 
  15. Majeed, W.I. and Sadiq, I.A. (2022), "Thermal buckling of laminated plates using modified Mantari function", J. Mech. Eng. (JMechE), 19(3), 205-220. https://doi.org/10.24191/jmeche.v19i3.19813. 
  16. Ounis, H., Tati, A. and Benchabane, A. (2014), "Thermal buckling behavior of laminated composite plates: A finite-element study", Front. Mech. Eng., 9, 41-49. https://doi.org/10.1007/s11465-014-0284-z 
  17. Owhadi, A. and Samsam Shariat, B. (2009), "Stability analysis of symmetric laminated composite plates with geometric imperfections under longitudinal temperature gradient", J. Mech., 25(2), 161-165. https://doi.org/10.1017/S1727719100002616. 
  18. Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermo-mechanical loading", Int. J. Appl. Comput. Math., 1, 475-490. https://doi.org/10.1007/s40819-015-0035-9. 
  19. Patro, S.S., Sutradhar, D., Behera, R.K. and Sharma, N. (2018), "Free vibration analysis of stiffened laminated composite plate in a thermal environment", IOP Conf. Ser.: Mater. Sci. Eng., 390(1), 012040. https://doi.org/10.1088/1757-899X/390/1/012040. 
  20. Prasad, N.E. and Wanhill, R.J. (2017), Aerospace Materials and Material Technologies, Springer, Singapore. 
  21. Rasid, Z.A. and Yahaya, H. (2015), "The thermal instability analysis of functionally graded carbon nanotube composite plates using finite element method", Appl. Mech. Mater., 695, 285-288. https://doi.org/10.4028/www.scientific.net/amm.695.285. 
  22. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719. 
  23. Rostamijavanani, A., Ebrahimi, M.R. and Jahedi, S. (2021), "Thermal post-buckling analysis of laminated composite plates embedded with shape memory alloy fibers using semi-analytical finite strip method", J. Fail. Anal. Prevent., 21, 290-301. https://doi.org/10.1007/s11668-020-01068-5. 
  24. Sayyad, A.S. and Ghugal, Y.M. (2014), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stab. Dyn., 14(07), 1450020. https://doi.org/10.1142/S0219455414500205. 
  25. Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2016), "Bending, vibration and buckling of laminated composite plates using a simple four variable plate theory", Lat. Am. J. Solid. Struct., 13, 516-535. https://doi.org/10.1590/1679-78252241. 
  26. Shiau, L.C. and Wu, T.Y. (1997), "Free vibration of buckled laminated plates by finite element method", J. Vib. Acoust., 119(4), 635. https://doi.org/10.1115/1.2889774. 
  27. Shinde, B.M., Kawade, A.B. and Sayyad, A.S. (2013), "Thermal response of isotropic plates using hyperbolic shear deformation theory", Int. J. Adv. Technol. Civil Eng., 2(1), 140-145. 
  28. Shinde, B.M., Sayyad, A.S. and Kawade, A.B. (2013), "Thermal analysis of isotropic plates using hyperbolic shear deformation theory", Appl. Comput. Mech., 7(2), 193-204. http://doi.org/10.47893/IJATCE.2013.1068. 
  29. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003. 
  30. Sun, Y. (2021), "Buckling and vibration performance of a composite laminated plate with elastic boundaries subjected to local thermal loading", Shock Vib., 2021, Article ID 5537946. https://doi.org/10.1155/2021/5537946. 
  31. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y. 
  32. Trabelsi, S., Zghal, S. and Dammak, F. (2020), "Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures", J. Brazil. Soc. Mech. Sci. Eng., 42, 1-22. https://doi.org/10.1007/s40430-020-02314-5. 
  33. Van Tung, H. (2015), "Thermal and thermomechanical postbuckling of FGM sandwich plates resting on elastic foundations with tangential edge constraints and temperature dependent properties", Compos. Struct., 131, 1028-1039. https://doi.org/10.1016/j.compstruct.2015.06.043. 
  34. Yang, X., Fei, Q., Wu, S. and Li, Y. (2020), "Thermal buckling and dynamic characteristics of composite plates under pressure load", J. Mech. Sci. Technol., 34, 3117-3125. https://doi.org/10.1007/s12206-020-0702-6. 
  35. Yang, Z., Liu, A., Yang, J., Fu, J. and Yang, B. (2020), "Dynamic buckling of functionally graded graphene nanoplatelets reinforced composite shallow arches under a step central point load", J. Sound Vib., 465, 115019. https://doi.org/10.1016/j.jsv.2019.115019. 
  36. Yuksel, Y.Z. and Akbas, S.D. (2018), "Free vibration analysis of a cross-ply laminated plate in thermal environment", Int. J. Eng. Appl. Sci., 10(3), 176-189. https://doi.org/10.24107/ijeas.456755. 
  37. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012. 
  38. Zhao, X., Zhu, W.D. and Li, Y.H. (2020), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407.