DOI QR코드

DOI QR Code

Comparative Analysis of the Physical and Biochemical Properties of Light-cure Resin-modified Pulp Capping Materials

  • Tae Gyeom Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jongsoo Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Joonhaeng Lee (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jisun Shin (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Mi Ran Han (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Jongbin Kim (Department of Pediatric Dentistry, College of Dentistry, Dankook University) ;
  • Yujin Kim (Department of Biomaterials Science, College of Dentistry, Dankook University) ;
  • Jae Hee Park (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
  • 투고 : 2024.02.08
  • 심사 : 2024.04.05
  • 발행 : 2024.05.31

초록

This study compared the solubility, water absorption, dimensional stability, release of various ions (hydroxyl, calcium, sulfur, strontium, and silicon), and cytotoxicity of light-cured resin-modified pulp-capping materials. Resin-modified calcium hydroxide (Ultra-blendTM plus, UBP), light-cured resin-modified calcium silicate (TheraCal LCTM, TLC), and dual-cure resin-modified calcium silicate (TheraCal PTTM, TPT) were used. Each material was polymerized; solubility, 24-hour water absorption, and 30- day dimensional stability experiments were conducted to test its physical properties. Solubility was assessed according to the ISO 6876 standard, and 24 hours of water absorption, 30 days of dimensional stability were assessed by referring to the previous protocol respectively. Eluates at 3 and 24 hours and on 7, 14, and 28 days were analyzed according to the ISO 10993-12 standard. And the pH, Ion-releasing ability, cell proliferation rate, and cell viability were assessed using the eluates to evaluate biochemical characteristics. pH was measured with a pH meter and Ion-releasing ability was assessed using inductively coupled plasma atomic emission spectrometry (ICP-AES). Cell proliferation rate and cell viability were assessed using human dental pulp cells (hDPCs). The former was assessed by an absorbance assay using the CCK-8 solution, and the latter was assessed by Live and Dead staining. TPT exhibited lower solubility and water absorption than TLC. UBP and TPT demonstrated higher stability than TLC. The release of sulfur, strontium, calcium, and hydroxyl ions was higher for TLC and TPT than for UBP. The 28-day release of hydroxyl and silicon ions was similar for TLC and TPT. TLC alone exhibited a lower cell proliferation rate compared to the control group at a dilution ratio of 1 : 2 in cell proliferation and dead cells from Live and Dead assay evaluation. Thus, when using light-cure resin-modified pulp-capping materials, calcium silicate-based materials can be considered alternatives to calcium hydroxide-based materials. Moreover, when comparing physical and biochemical properties, TPT could be prioritized over TLC as the first choice.

키워드

과제정보

This research was funded by the Department of Dentistry (Pediatric Dentistry), the Research-Focused Department Promotion Project as part of the University Innovation Support Program for Dankook University in 2021(2020R1G1A1009155), and the Basic Science Research Program funded by the Ministry of Education (NRF-2022R1I1A1A01069606).

참고문헌

  1. Bogen G, Chandler N : Vital pulp therapy. Ingle's Endodontics, 6:1310-1329, 2008.
  2. Modena KC, Casas-Apayco LC, Atta MT, Costa CA, Hebling J, Sipert CR, Navarro MF, Santos CF : Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci, 17:544-554, 2009. https://doi.org/10.1590/S1678-77572009000600002
  3. Nielsen MJ, Casey JA, VanderWeele RA, Vandewalle KS : Mechanical Properties of New Dental Pulp-Capping Materials. Gen Dent, 64:44-48, 2016.
  4. Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP : Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc, 127:1491-1494, 1996. https://doi.org/10.14219/jada.archive.1996.0058
  5. Qureshi A, E S, Nandakumar, Pratapkumar, Sambashivarao : Recent advances in pulp capping materials: an overview. J Clin Diagn Res, 8:316-321, 2014. https://doi.org/10.7860/JCDR/2014/7719.3980
  6. da Rosa WL, Cocco AR, Silva TMd, Mesquita LC, Galarca AD, Silva AFd, Piva E : Current trends and future perspectives of dental pulp capping materials: A systematic review. J Biomed Mater Res B Appl Biomater, 106:1358-1368, 2018. https://doi.org/10.1002/jbm.b.33934
  7. Chen L, Suh BI : Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: A state-of-the-art review. Dent Mater J, 36:1-7, 2017. https://doi.org/10.4012/dmj.2016-107
  8. Hirschman WR, Wheater MA, Bringas JS, Hoen MM : Cytotoxicity comparison of three current direct pulp-capping agents with a new bioceramic root repair putty. J Endod, 38:385-388, 2012. https://doi.org/10.1016/j.joen.2011.11.012
  9. Komabayashi T, Zhu Q, Eberhart R, Imai Y : Current status of direct pulp-capping materials for permanent teeth. Dent Mater J, 35:1-12, 2016. https://doi.org/10.4012/dmj.2015-013
  10. Girish CS, Ponnappa K, Girish T, Ponappa M : Sealing ability of mineral trioxide aggregate, calcium phosphate and polymethylmethacrylate bone cements on root ends prepared using an Erbium: Yttriumaluminium garnet laser and ultrasonics evaluated by confocal laser scanning microscopy. J Conserv Dent, 16: 304-308, 2013. https://doi.org/10.4103/0972-0707.114355
  11. Fridland M, Rosado R : Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod, 29:814-817, 2003. https://doi.org/10.1097/00004770-200312000-00007
  12. Wu M, Wang T, Zhang Y : Premixed tricalcium silicate/sodium phosphate dibasic cements for root canal filling. Mater Chem Phys, 257:123682, 2021.
  13. Camilleri J : Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater, 30:709-715, 2014. https://doi.org/10.1016/j.dental.2014.03.012
  14. Arandi NZ, Rabi T : TheraCal LC: from biochemical and bioactive properties to clinical applications. Int J Dent, 2018:3484653, 2018.
  15. Sanz JL, Soler-Doria A, Lopez-Garcia S, Garcia-Bernal D, Rodriguez-Lozano FJ, Lozano A, Llena C, Forner L, Guerrero-Girones J, Melo M : Comparative biological properties and mineralization potential of 3 endodontic materials for vital pulp therapy: Theracal PT, Theracal LC, and Biodentine on human dental pulp stem cells. J Endod, 47:1896-1906, 2021. https://doi.org/10.1016/j.joen.2021.08.001
  16. Wassel M, Hamdy D, Elghazawy R : Evaluation of four vital pulp therapies for primary molars using a dual-cured tricalcium silicate (TheraCal PT): one-year results of a non-randomized clinical trial. J Clin Pediatr Dent, 47:10-22, 2023.
  17. Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV : Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent, 34:E202-208, 2012.
  18. Gandolfi MG, Siboni F, Prati C : Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J, 45:571-579, 2012. https://doi.org/10.1111/j.1365-2591.2012.02013.x
  19. Carvalho-Junior JR, Correr-Sobrinho L, Correr AB, Sinhoreti MA, Consani S, Sousa-Neto MD : Solubility and dimensional change after setting of root canal sealers: a proposal for smaller dimensions of test samples. J Endod, 33:1110-1116, 2007. https://doi.org/10.1016/j.joen.2007.06.004
  20. Daltoe MO, Paula-Silva FWG, Faccioli LH, Gaton-Hernandez PM, De Rossi A, Silva LAB : Expression of mineralization markers during pulp response to biodentine and mineral trioxide aggregate. J Endod, 42:596-603, 2016. https://doi.org/10.1016/j.joen.2015.12.018
  21. Oncel Torun Z, Torun D, Demirkaya K, Yavuz S, Elci M, Sarper M, Avcu F : Effects of iRoot BP and white mineral trioxide aggregate on cell viability and the expression of genes associated with mineralization. Int Endod J, 48:986-993, 2015. https://doi.org/10.1111/iej.12393
  22. Bortoluzzi EA, Niu LN, Palani CD, El-Awady AR, Hammond BD, Pei DD, Tian FC, Cutler CW, Pashley DH, Tay FR : Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater, 31:1510-1522, 2015. https://doi.org/10.1016/j.dental.2015.09.020
  23. Kang MS, Kim JH, Singh RK, Jang JH, Kim HW : Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater, 16:103-116, 2015. https://doi.org/10.1016/j.actbio.2014.12.028
  24. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S : Solubility and pH of direct pulp capping materials: a comparative study. J Appl Biomater Funct Mater, 13:E181-185, 2015. https://doi.org/10.5301/jabfm.5000230
  25. El-Mal EOA, Abu-Seida AM, El Ashry SH : A comparative study of the physicochemical properties of hesperidin, MTA-Angelus and calcium hydroxide as pulp capping materials. Saudi Dent J, 31:219-227, 2019. https://doi.org/10.1016/j.sdentj.2018.09.004
  26. Gandolfi MG, Siboni F, Botero T, Bossu M, Riccitiello F, Prati C : Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater, 13:43-60, 2015. https://doi.org/10.5301/jabfm.5000201
  27. Francisconi LF, Freitas APd, Scaffa PMC, Mondelli RFL, Francisconi PAS : Water sorption and solubility of different calcium hydroxide cements. J Appl Oral Sci, 17:427-431, 2009. https://doi.org/10.1590/S1678-77572009000500014
  28. Vafaei A, Azima N, Erfanparast L, Lovschall H, Ranjkesh B : Direct pulp capping of primary molars using a novel fast-setting calcium silicate cement: a randomized clinical trial with 12-month follow-up. Biomater Investig Dent, 6:73-80, 2019. https://doi.org/10.1080/26415275.2019.1688662
  29. Desai S, Chandler N : Calcium hydroxide-based root canal sealers: a review. J Endod, 35:475-480, 2009. https://doi.org/10.1016/j.joen.2008.11.026
  30. Pribadi N, Rosselle VR, Zubaidah N, Widjiastuti I : The solubility and water sorption properties of a combination of Ca(OH)2 and propolis when used as pulp capping material. Indian J Dent Res, 31:557-561, 2020. https://doi.org/10.4103/ijdr.IJDR_422_19
  31. Araujo IDT, Soares RB, Lopes CP, Ferreira IA, Borges BCD : Influence of exposure to phosphoric and poly-acrylic acids on selected microscopic and physical/chemical properties of calcium hydroxide cements. Eur Oral Res, 54:69-76, 2020. https://doi.org/10.26650/eor.20200057
  32. Camilleri J, Laurent P, About I : Hydration of biodentine, theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod, 40:1846-1854, 2014. https://doi.org/10.1016/j.joen.2014.06.018
  33. de Mendonca Petta T, Pedroni ACF, Saavedra DF, Faial KdCF, Marques MM, Couto RSDA : The effect of three different pulp capping cements on mineralization of dental pulp stem cells. Dent Mater J, 39:222-228, 2020. https://doi.org/10.4012/dmj.2018-349
  34. Camilleri J, Mallia B : Evaluation of the dimensional changes of mineral trioxide aggregate sealer. Int Endod J, 44:416-424, 2011. https://doi.org/10.1111/j.1365-2591.2010.01844.x
  35. Gasperi TL, Silveira JdACd, Schmidt TF, Teixeira CdS, Garcia LdFR, Bortoluzzi EA : Physical-mechanical properties of a resin-modified calcium silicate material for pulp capping. Braz Dent J, 31:252-256, 2020. https://doi.org/10.1590/0103-6440202003079
  36. McCabe JF, Rusby S : Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials, 25:4001-4007, 2004. https://doi.org/10.1016/j.biomaterials.2003.10.088
  37. Flores-Ledesma A, Tejeda-Cruz A, Moyaho-Bernal MA, Wintergerst A, Moreno-Vargas YA, Rodriguez-Chavez JA, Cuevas-Suarez CE, Gutierrez-Estrada K, Arenas-Alatorre JA : Physical properties, marginal adaptation and bioactivity of an experimental mineral trioxide aggregate-like cement modified with bioactive materials. J Oral Sci, 65:141-147, 2023. https://doi.org/10.2334/josnusd.22-0449
  38. Hansen EK, Asmussen E : Marginal adaptation of posterior resins: Effect of dentin-bonding agent and hygroscopic expansion. Dent Mater, 5:122-126, 1989. https://doi.org/10.1016/0109-5641(89)90142-5
  39. Natale LC, Rodrigues MC, Xavier TA, Simoes A, De Souza DN, Braga RR : Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J, 48:89-94, 2015. https://doi.org/10.1111/iej.12281
  40. Ximenes M, Cardoso M : Assessment of diffusion of hydroxyl and calcium ions of root canal filling materials in primary teeth. Pediatr Dent, 34:122-126, 2012.
  41. Duarte MAH, Martins CS, Demarchi ACdOC, de Godoy LF, Kuga MC, Yamashita JC : Calcium and hydroxide release from different pulp-capping materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 104:E66-69, 2007. https://doi.org/10.1016/j.tripleo.2007.01.024
  42. Okiji T, Yoshiba K : Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J Dent, 2009:464280, 2009.
  43. Parirokh M, Torabinejad M : Mineral trioxide aggregate: a comprehensive literature review - part I: chemical, physical, and antibacterial properties. J Endod, 36:16-27, 2010. https://doi.org/10.1016/j.joen.2009.09.006
  44. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J : The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials, 26:4847-4855, 2005. https://doi.org/10.1016/j.biomaterials.2005.01.006
  45. An S, Gao Y, Ling J, Wei X, Xiao Y : Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. J Mater Sci Mater Med, 23:789-795, 2012. https://doi.org/10.1007/s10856-011-4531-0
  46. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, Ito K : Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J, 39:415-422, 2006. https://doi.org/10.1111/j.1365-2591.2006.01097.x
  47. Weld JT, Gunther A : The antibacterial properties of sulfur. J Exp Med, 85:531-542, 1947. https://doi.org/10.1084/jem.85.5.531
  48. Roy Choudhury S, Roy S, Goswami A, Basu S : Polyethylene glycol-stabilized sulphur nanoparticles: an effective antimicrobial agent against multidrug-resistant bacteria. J Antimicrob Chemother, 67:1134-1137, 2012. https://doi.org/10.1093/jac/dkr591
  49. Huang M, Hill RG, Rawlinson SC : Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater, 38:201-211, 2016. https://doi.org/10.1016/j.actbio.2016.04.037
  50. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A : Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone, 29:176-179, 2001. https://doi.org/10.1016/S8756-3282(01)00484-7
  51. Kawashima S, Shinkai K, Suzuki M : Effect of an experimental adhesive resin containing multi-ion releasing fillers on direct pulp-capping. Dent Mater J, 35:479-489, 2016. https://doi.org/10.4012/dmj.2015-381
  52. Giraud T, Jeanneau C, Rombouts C, Bakhtiar H, Laurent P, About I : Pulp capping materials modulate the balance between inflammation and regeneration. Dent Mater, 35:24-35, 2019. https://doi.org/10.1016/j.dental.2018.09.008
  53. Saito T, Toyooka H, Ito S, Crenshaw MA : In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Caries Res, 37:445-449, 2003. https://doi.org/10.1159/000073398
  54. Elbanna A, Atta D, Sherief DI : In vitro bioactivity of newly introduced dual-cured resin-modified calcium silicate cement. Dent Res J (Isfahan), 19:1, 2022.
  55. Okulus Z, Buchwald T, Voelkel A : Calcium release from experimental dental materials. Mater Sci Eng C Mater Biol Appl, 68:213-220, 2016. https://doi.org/10.1016/j.msec.2016.05.116
  56. Park SH, Ye JR, Asiri NM, Chae YK, Choi SC, Nam OH : Biocompatibility and Bioactivity of a Dual-Cured Resin-Based Calcium Silicate Cement: In Vitro and in vivo Evaluation. J Endod, 50:235-242, 2024. https://doi.org/10.1016/j.joen.2023.11.009
  57. Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B : Cytotoxicity and bioactivity of dental pulp-capping agents towards human tooth-pulp cells: a systematic review of in-vitro studies and meta-analysis of randomized and controlled clinical trials. Materials, 13:2670, 2020.
  58. Pedano MS, Li X, Li S, Sun Z, Cokic SM, Putzeys E, Yoshihara K, Yoshida Y, Chen Z, Van Landuyt K, Van Meerbeek B : Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells. Dent Mater, 34:797-808, 2018. https://doi.org/10.1016/j.dental.2018.02.005
  59. Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR : The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. Int Endod J, 38:834-842, 2005. https://doi.org/10.1111/j.1365-2591.2005.01028.x
  60. Lozano-Guillen A, Lopez-Garcia S, Rodriguez-Lozano FJ, Sanz JL, Lozano A, Llena C, Forner L : Comparative cytocompatibility of the new calcium silicate-based cement NeoPutty versus NeoMTA Plus and MTA on human dental pulp cells: an in vitro study. Clin Oral Investig, 26:7219-7228, 2022. https://doi.org/10.1007/s00784-022-04682-9
  61. Panda P, Govind S, Sahoo SK, Pattanaik S, Mallikarjuna RM, Nalawade T, Saraf S, Khaldi NA, Jahdhami SA, Shivagange V, Jena A : Analysis of Pulp Tissue Viability and Cytotoxicity of Pulp Capping Agents. J Clin Med, 12:539, 2023.
  62. Kunert M, Rozpedek-Kaminska W, Galita G, Sauro S, Bourgi R, Hardan L, Majsterek I, Lukomska-Szymanska M : The Cytotoxicity and Genotoxicity of Bioactive Dental Materials. Cells, 11:3238, 2022.
  63. Yoshihara K, Nagaoka N, Okihara T, Irie M, Matsukawa A, Pedano MS, Maruo Y, Yoshida Y, Van Meerbeek B : Development of self-adhesive pulp-capping agents containing a novel hydrophilic and highly polymerizable acrylamide monomer. J Mater Chem B, 8:5320-5329, 2020. https://doi.org/10.1039/D0TB00079E