DOI QR코드

DOI QR Code

Study on predictive model and mechanism analysis for martensite transformation temperatures through explainable artificial intelligence

설명가능한 인공지능을 통한 마르텐사이트 변태 온도 예측 모델 및 거동 분석 연구

  • Junhyub Jeon (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seung Bae Son (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 전준협 (전북대학교 신소재 공학과) ;
  • 손승배 (전북대학교 신소재 공학과) ;
  • 정재길 (전북대학교 신소재 공학과) ;
  • 이석재 (전북대학교 신소재 공학과)
  • Received : 2024.03.25
  • Accepted : 2024.05.20
  • Published : 2024.05.30

Abstract

Martensite volume fraction significantly affects the mechanical properties of alloy steels. Martensite start temperature (Ms), transformation temperature for martensite 50 vol.% (M50), and transformation temperature for martensite 90 vol.% (M90) are important transformation temperatures to control the martensite phase fraction. Several researchers proposed empirical equations and machine learning models to predict the Ms temperature. These numerical approaches can easily predict the Ms temperature without additional experiment and cost. However, to control martensite phase fraction more precisely, we need to reduce prediction error of the Ms model and propose prediction models for other martensite transformation temperatures (M50, M90). In the present study, machine learning model was applied to suggest the predictive model for the Ms, M50, M90 temperatures. To explain prediction mechanisms and suggest feature importance on martensite transformation temperature of machine learning models, the explainable artificial intelligence (XAI) is employed. Random forest regression (RFR) showed the best performance for predicting the Ms, M50, M90 temperatures using different machine learning models. The feature importance was proposed and the prediction mechanisms were discussed by XAI.

Keywords

Acknowledgement

This work was supported by the Technology Innovation Program (20026418) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. G. E. Totten: Steel Heat Treatment: Metallurgy and Technologies, New York, (2007) 143. 
  2. A. P. David, E. E. Kenneth and Y. S. Mohamed: Phase Transformations in Metals and Alloys, CRC Press Taylor & Francis Group, New York, (2009) 402. 
  3. H. Bhadeshi and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed, Oxford, Butterworth-Heinemann, (2006) 125. 
  4. H. S. Yang and H. K. D. H. Bhadeshia: Scr. Mater. 60 (2009) 493-495.  https://doi.org/10.1016/j.scriptamat.2008.11.043
  5. H. S. Yang and H. K. D. H. Bhadeshia: Mater. Sci. Technol. 23 (2007) 556-560.  https://doi.org/10.1179/174328407X176857
  6. B. B. He, W. Xu and M. X. Huang: Mater. Sci. Eng. A 609 (2014) 141-146.  https://doi.org/10.1016/j.msea.2014.04.108
  7. E. P. D. Silva, D. D. Knijf, W. Xu, C. Fojer, Y. Houbaert, J. Sietsma and R. Petrov: Mater. Sci. Technol. 31 (2015) 808-816.  https://doi.org/10.1179/1743284714Y.0000000719
  8. K. Ishida: J. Alloys Compd. 220 (1995) 126-131.  https://doi.org/10.1016/0925-8388(94)06002-9
  9. J. Park, J. H. Shim and S. J. Lee: Metall. Mater. Trans. A 49 (2018) 450-454.  https://doi.org/10.1007/s11661-017-4436-8
  10. S. J. Lee and K. S. Park: Metall. Mater. Trans. A 44A (2013) 3423-3427.  https://doi.org/10.1007/s11661-013-1798-4
  11. J. Platl, H. Leitner, C. Turk and R. Schnitzer: Steel Research Int. 91 (2020) 2000063. 
  12. W. G. Vermeulen, P. F. Morris, A. P. D. Weijer and S. V. D. Zwaag: Ironmak. Steelmak. 23 (1996) 433-437. 
  13. Q. Lu, S. Liu, W. Li and X. Jin: Mater. Des. 192 (2020) 108696. 
  14. C. Capdevila, F. G. Caballero and C. G. D. Andres: Mater. Sci. Technol. 19 (2003) 581-586.  https://doi.org/10.1179/026708303225001902
  15. C. Wang, K. Zhu, P. Hedstrom, Y. Li and W. Xu: J. Mater. Sci. Technol. 128 (2022) 31-43.  https://doi.org/10.1016/j.jmst.2022.04.014
  16. J. Jeon, N. Seo, J. G. Jung, S. B. Son and S. J. Lee: Mater. Trans 64 (2023) 2196-2201. 
  17. J. Jeon, N. Seo, J. G. Jung, H. S. Kim, S. B. Son and S. J. Lee: J. Mater. Res. Technol. 21 (2022) 1408-1418.  https://doi.org/10.1016/j.jmrt.2022.09.119
  18. J. Jeon, N. Seo, S. B. Son, J. G. Jung and S. J. Lee: J. Mater. Sci. 57 (2022) 18142-18153.  https://doi.org/10.1007/s10853-022-07538-5
  19. American Society for Metals: Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Materials Park, OH, 1977. 
  20. S.J. Lee and C. J. Van Tyne: Metall. Mater. A 43A (2012) 422-427.  https://doi.org/10.1007/s11661-011-0872-z
  21. S. M. Lundberg and S. I. Lee: In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, U.S.A., (2017) pp. 4768-4777. 
  22. L. S. Shapley: Technical Report for U.S. Air Force, Rand Corporation, Santa Monica, Ca, U.S.A., (1951). 
  23. G. Ghosh and G. B. Olson: Acta Mater. 42 (1994) 3361-3370. https://doi.org/10.1016/0956-7151(94)90468-5