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RESIDUAL p-FINITENESS OF CERTAIN HNN EXTENSIONS

OF FREE ABELIAN GROUPS OF FINITE RANK

Chiew Khiam Tang and Peng Choon Wong

Abstract. Let p be a prime. A group G is said to be residually p-finite

if for each non-trivial element x of G, there exists a normal subgroup
N of index a power of p in G such that x is not in N . In this note we

shall prove that certain HNN extensions of free abelian groups of finite
rank are residually p-finite. In addition some of these HNN extensions

are subgroup separable. Characterisations for certain one-relator groups

and similar groups including the Baumslag-Solitar groups to be residually
p-finite are proved.

1. Introduction

Let p be a prime. A group G is said to be residually p-finite if for each
non-trivial element x of G, there exists a normal subgroup N of index a power
of p in G such that x /∈ N . However not many classes of groups are known to
be residually p-finite. Free groups and finitely generated torsion-free nilpotent
groups are residually p-finite for all primes p (see [6, 9]). Gruenberg in [6] had
proved that residual nilpotence and being residually of prime-power order are
equivalent properties for the class of finitely generated groups. In [8], Higman
proved that a generalised free product of two finite p-groups amalgamating a
cyclic subgroup, is residually p-finite. Kim and McCarron [11] then generalised
Higman’s result by proving that the generalised free product of residually p-
groups amalgamating a finite cyclic subgroup, is residually p-finite. Other
important results on the residual p-finiteness of generalised free products, tree
products, polygonal products and certain one relator groups can be found in
the papers [11–14, 16] by Kim, McCarron and Tang and [24, 25] by Wong and
Tang.

On the other hand, the residual properties of HNN extensions of groups are
difficult to obtain since one of the simplest type of an HNN extension of a cyclic
group, the torsion-free Baumslag-Solitar group, BS(2, 3) = ⟨t, a | t−1a2t = a3⟩
is not even residually finite (see [4]). Another example is given by Kim and
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Tang [15] of a torsion-free HNN extension of a finitely generated free nilpotent
group of class 2 that is not residually finite.

In this note we prove that certain HNN extensions of free abelian groups
of finite rank are residually p-finite including proving a criterion. In addition
we shall show some of these HNN extensions are subgroup separable. We shall
apply our results to show characterisations for certain one-relator groups and
similar groups, including the Baumslag-Solitar groups, to be residually p-finite.
Some of these characterisations are based on those by Raptis and Varsos in [17]
and Andredakis, Raptis and Varsos in [1] on residual finiteness.

Raptis and Varsos in the papers [17–19] proved important results on the
residual nilpotence and residual p-finiteness of HNN extensions with base groups
finitely generated abelian groups. In particular, Raptis and Varsos in [19],
showed that the HNN extensions of a finite abelian p-group where the associ-
ated subgroups have trivial intersection are residually p-finite (see Theorem 3.3
in this paper). We shall use results from Andreadakis, Raptis and Varsos in
the papers [2, 17, 19] directly. The motivation for this paper are the following
two results by Raptis and Varsos in [19], [17], respectively (listed as Theorem
3.3 and Theorem 4.10 in this paper).

Theorem 3.3 ([19]). Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension,
where K is a finite abelian p-group. If A∩B = 1, then G is residually p-finite.

Theorem 4.10 ([17]). Let K be a finitely generated abelian group, A,B ≤
K and φ : A → B an isomorphism, let G = ⟨t,K; t−1At = B,φ⟩ be the
corresponding HNN extension. If A ∩B is finite, then G is residually finite.

Theorem 3.3 is not explicitly stated in [19] but it is a consequence of Corol-
lary 5.1 and Corollary 1.2 in [19]. Theorem 3.3 will be used in the proof of
Theorem 3.4.

In this paper, our main results are the following theorems:

Theorem 3.4. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank. If A∩B = 1, then G is residually p-finite.

Theorem 3.5. Let G = ⟨t,K; t−1At = A,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank. Then G is residually p-finite.

Theorem 4.1. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank with A ∩ B = 1. Then the following are
equivalent:

(i) G is residually p-finite.
(ii) G is residually finite.
(iii) There exists N ◁f K such that (A ∩N)φ = B ∩N and A ∩N,B ∩N

are isolated in N .
(iv) There exists a free abelian group X of finite rank such that K is a

subgroup of finite index in X and an automorphism φ̄ ∈ AutX such
that φ̄|A = φ.

By using the criterion Theorem 4.1, we have the following:
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Corollary 4.12. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where
K is a free abelian group of finite rank. Suppose A∩B = 1 and A and B have
finite indices in K. Then G is residually p-finite and subgroup separable.

Our last result, Theorem 5.4, which is a characterisation on the residu-
ally p-finiteness of the Baumslag-Solitar groups, can be derived from the Main
Theorem of Kim and McCarron [12] but we shall provide a partial proof using
Theorem 3.5.

Theorem 5.4. Let G = ⟨t, a | t−1art = as⟩, where r, s ∈ Z. Suppose the
following conditions (r = 1, s ≡ 1 (mod p)) and (s = 1, r ≡ 1 (mod p)) do
not occur. Then G is residually p-finite if and only if |r| = |s|.
The notation used here is standard. In addition, the following will be used for
any group G:

(i) p denotes a prime.
(ii) N denotes the set of natural numbers.
(iii) Z denotes the set of integers.
(iv) H ≤ G (resp. H ≤f G) means H is a subgroup (resp. a subgroup of

finite index) in G
(v) N ◁f G (resp. N ◁p G) means N is a normal subgroup of finite index

(resp. a normal subgroup of index a power of p) in G.
(vi) G = ⟨t,K; t−1At = B,φ⟩ denotes an HNN extension, where K is the

base group, A,B are the associated subgroups and φ : A → B is the
associated isomorphism from A to B.

2. Preliminaries

We now state the main definitions as well as some essential lemmas.

Definition 2.1. A groupG is said to be residually p-finite if for each 1 ̸= x ∈ G,
there exists N ◁p G such that x /∈ N .

Definition 2.2. A group G is said to be subgroup separable if for every finitely
generated subgroup H of G and every x ∈ G\H, there exists N ◁f G such that
x /∈ HN .

We state the following well known theorem with a complete proof (see [22]).

Lemma 2.3. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a finite group. Then G is free-by-finite and hence G is subgroup separable
(residually finite).

Proof. The group G is free-by-finite (see [7,10]). We note that free groups are
subgroup separable (see [7]), and finite extensions of a subgroup separable group
are again subgroup separable (see [20, 21]). Hence the group G is subgroup
separable. □

Next we recall the definition of an isolated subgroup.
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Definition 2.4. Let G be a group and H < G. Then the subgroup H is
isolated in G if whenever gn ∈ H for g ∈ G and n ∈ N, we have g ∈ H.

Lemma 2.5. Let G be a group and H ◁ G. Then H is isolated in G if and
only if G/H is torsion free.

3. The main results

In this section, we obtain two of our main results. Let G = ⟨t,K; t−1At =
B,φ⟩, where K is a free abelian group of finite rank. If A ∩ B = 1 or A = B,
then G is residually p-finite. We begin with three results of Raptis and Varsos.

Lemma 3.1 ([19, Corollary 5.1]). Let K be a finite abelian p-group. Let A,B ≤
K and φ : A → B an isomorphism. If A ∩ B = 1, then there exist a finite
abelian p-group X and an automorphism θ of X such that K ≤ X, |θ| = ps for
some s ∈ N and θ|A = φ.

Lemma 3.2 ([19, Corollary 1.2]). Let K be a finite p-group, A,B ≤ K and
θ ∈ AutK such that |θ| = ps for some s ∈ N and Aθ = B. If φ = θ|A, then the
HNN extension G = ⟨t,K; t−1At = B,φ⟩ is residually p-finite.

Theorem 3.3 is not explicitly stated in [19] but it is a consequence of Lemma
3.1 and Lemma 3.2.

Theorem 3.3 ([19]). Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension,
where K is a finite abelian p-group. If A∩B = 1, then G is residually p-finite.

Proof. By Lemma 3.1, there exist a finite abelian p-group X and an automor-
phism θ of X such that K ≤ X, |θ| = ps for some s ∈ N and θ|A = φ. Let
G∗ = ⟨t,X; t−1At = B,φ⟩. Now by Lemma 3.2, G∗ is residually p-finite. Since
G < G∗, G is residually p-finite. □

First we consider the HNN extension G = ⟨t,K; t−1At = B,φ⟩, where K is
a free abelian group of finite rank and A ∩B = 1.

Theorem 3.4. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank. If A∩B = 1, then G is residually p-finite.

Proof. Since K is free abelian, then by Proposition 2.2 of Baumslag [3],
⋂

Kpn

= 1 for almost all primes p. Since K ̸= A, K ̸= B, then again by Proposition
2.2 of Baumslag [3], for a prime p, we have

⋂
AKpn

= A,
⋂

BKpn

= B for every
n ∈ N and also A∩Kpn

= Apn

, B ∩Kpn

= Bpn

for every n ∈ N. Furthermore
AKpn ∩BKpn

= Kpn

since AKpn ∩BKpn

= (A ∩B)Kpn

= 1Kpn

= Kpn

.
Let 1 ̸= x ∈ G be a reduced element in G. We prove the theorem by

constructing a residually p-finite image group Ḡ of G such that x̄ ̸= 1̄. Then
there exists P̄ ◁f Ḡ such that x̃ ̸= 1̃ in G̃ = Ḡ/P̄ . Let P be the preimage of P̄
in G. Then P ◁f G such that x̄ ̸= 1̄ in Ḡ = G/P and we are done.
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Case 1. ∥x∥ = 0, that is, x ∈ K. Since
⋂
Kpn

= 1, there exists r ∈ N such
that x /∈ Kpr

. Furthermore (A ∩ Kpr

)φ = (Apr

)φ = Bpr

= B ∩ Kpr

. Hence
we can form Ḡ = ⟨t, K̄; t−1Āt = B̄, φ̄⟩, where K̄ = K/Kpr

, Ā = AKpr

/Kpr

,
B̄ = BKpr

/Kpr

and φ̄ : Ā → B̄ is the isomorphism induced by φ. Clearly
Ḡ is a homomorphic image of G. Furthermore from above, we have Ā ∩ B̄ =
(AKpr

/Kpr

) ∩ (BKpr

/Kpr

) = (AKpr ∩ BKpr

)/Kpr

= Kpr

/Kpr

= 1̄. Let x̄
denote the image of x in Ḡ. Then x̄ has order ps in Ḡ for some integer s and
so x̄ ̸= 1̄. Since K̄ is a finite abelian p-group and Ā∩ B̄ = 1̄, then by Theorem
3.3, Ḡ is residually p-finite and our result now follows.

Case 2. ∥x∥ ≥ 1. Without loss of generality, we let x = te1x1t
e2x2 · · · tenxn,

where xi ∈ K and ei = ±1, 1 ≤ i ≤ n, n ≥ 1. Let ui denote those xi in K\A,
vi denote those xi in K\B and wi those xi in A ∪ B\1. Since

⋂
Kpn

= 1,⋂
AKpn

= A and
⋂
BKpn

= B for all n ∈ N, we can find r ∈ N such that
ui /∈ AKpr

, vi /∈ BKpr

and wi /∈ Kpr

for all i. We proceed as in Case 1 to
form Ḡ. Then x̄ is reduced in Ḡ and ∥x̄∥ = ∥x∥ ≥ 1. It follows that x̄ ̸= 1̄.
Since Ḡ is residually p-finite, we are done. □

Next we consider the HNN extension G = ⟨t,K; t−1At = A,φ⟩, where K
is a free abelian group of finite rank and φ is an automorphism of A, that is,
Theorem 3.5 below.

Theorem 3.5. Let G = ⟨t,K; t−1At = A,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank. Then G is residually p-finite.

Proof. If K = A, then G = ⟨t,K; t−1Kt = K,φ⟩ is free abelian and hence
residually p-finite. Now letK ̸= A. SinceK is free abelian, then by Proposition
2.2 of Baumslag [3],

⋂
Kpn

= 1 for almost all primes p. Since K ̸= A, then
again by Proposition 2.2 of Baumslag [3], for a prime p, we have

⋂
AKpn

= A
for all n ∈ N.

Let 1 ̸= x ∈ G be a reduced element in G. As in the proof of Theorem 3.4,
we shall proceed by constructing a residually p-finite image group Ḡ of G such
that x̄ ̸= 1̄. The result will then follows.

Case 1. ∥x∥ = 0, that is, x ∈ K. Since
⋂
Kpn

= 1, there exists r ∈ N such
that x /∈ Kpr

. Note that since Kpr

is characteristic in K, then (A ∩ Kpr

) is
characteristic in A. Since φ is an automorphism of A, we have (A ∩Kpr

)φ =
A ∩ Kpr

. Hence φ induces an isomorphism from Ā = AKpr

/Kpr

onto itself
which we denote by φ̄. We can form Ḡ = ⟨t, K̄; t−1Āt = Ā, φ̄⟩, where K̄ =
K/Kpr

, Ā = AKpr

/Kpr

and φ̄ is the isomorphism induced by φ. Clearly Ḡ
is a homomorphic image of G. Let x̄ denote the image of x in Ḡ. Then x̄ has
order ps in Ḡ for some integer s and so x̄ ̸= 1̄. Let θ be the homomorphism of Ḡ
onto the finite p-group K̄ and J be the kernel of θ. Then J ∩ K̄ = 1̄. Therefore
J is a finitely generated free group and hence J is a residually p-finite group.
So Ḡ is an extension of residually p-finite group by a finite p-group. It follows
that Ḡ is residually p-finite and we are done.
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Case 2. ∥x∥ ≥ 1. With loss of generality, we let x = te1x1t
e2x2 · · · tenxn,

where xi ∈ K and ei = ±1, 1 ≤ i ≤ n, n ≥ 1. Let ui denote those xi in K\A
and vi denote those xi in A\{1}. Since

⋂
Kpn

= 1 and
⋂
AKpn

= A for all
n ∈ N, there exists r ∈ Z such that ui /∈ AKpr

and vi /∈ Kpr

for all i. We
form Ḡ = ⟨t, K̄; t−1Āt = Ā, φ̄⟩, where K̄ = K/Kpr

, Ā = AKpr

/Kpr

and φ̄ is
the isomorphism induced by φ. Clearly Ḡ is a homomorphic image of G. Let
x̄ denote the image of x in Ḡ. Then x̄ is reduced in Ḡ and ∥x̄∥ = ∥x∥. This
implies that x̄ ̸= 1̄ in Ḡ. Arguing as in Case 1 above, our result follows. □

4. A criterion

In this section, we prove a criterion, Theorem 4.1, for certain HNN exten-
sions of free abelian groups of finite rank to be residually p-finite. From this
criterion we shall give another proof of Theorem 3.4 and also show that certain
of these HNN extensions are residually p-finite if and only if they are subgroup
separable.

Theorem 4.1. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank and A ∩ B = 1. Then the following are
equivalent:

(i) G is residually p-finite.
(ii) G is residually finite.
(iii) There exists N ◁f K such that (A ∩N)φ = B ∩N and A ∩N , B ∩N

are isolated in N .
(iv) There exists a free abelian group X of finite rank such that K is a

subgroup of finite index in X and an automorphism φ̄ ∈ AutX such
that φ̄|A = φ.

We shall prove Theorem 4.1 in this order: (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).

Trivially (i) implies (ii). We now prove (ii)⇒(iii). This will be done in
Lemma 4.3. First we show Lemma 4.2.

Lemma 4.2. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank and K ̸= A, K ̸= B. Suppose that G is
residually finite. Then ∩AN = A and ∩BN = B, where N ∈ ∆ = {N | N◁fK
and (A ∩N)φ = B ∩N}.

Proof. Let x ∈ ∩AN\A, where N ∈ ∆ and y ∈ K\B. Then z = [t−1xt, y] ̸= 1.
Let x = an, where a ∈ A, n ∈ N and suppose t−1at = b, where b ∈ B. Then
zN = [t−1ant, y]N = [t−1at, y]N = [b, y]N = N since K is abelian. This
implies that z ∈ ∩N . Since G is residually finite, then by Theorem 2.3 of
Choon and Bin [5] we have ∩N = 1. Thus we have a contradiction since z ̸= 1.
Therefore ∩AN = A and in a similar way we prove ∩BN = B. □

We now show (ii)⇒(iii).
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Lemma 4.3. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K
is a free abelian group of finite rank and K ̸= A, K ̸= B. Suppose that G is
residually finite. Then there exists N ◁f K such that (A ∩N)φ = B ∩N and
A ∩N,B ∩N are isolated in N .

Proof. By Lemma 4.2, ∩AN = A and ∩BN = A, where N ∈ ∆ = {N | N◁fK
and (A ∩N)φ = B ∩N}. Let S/A and T/B be the torsion parts of K/A and
K/B, respectively. Since K is finitely generated, S/A and T/B are finite. For
each non-trivial element xA ∈ S/A, there exists Nx ∈ ∆ such that Nx∩xA = ∅
since ∩AN = A. Similarly, for each non-trivial element yB ∈ T/B, there exists
Ny ∈ ∆ such that Ny∩yB = ∅ since ∩BN = B. Let N = (∩Nx)∩(∩Ny) where
the intersection extends over all the finitely many elements of S/A and T/B.
Clearly N ◁f K and (A∩N)φ = B ∩N . By the construction of N , AN/A and
BN/B are torsion free. Since N/A∩N ≃ AN/A and N/B ∩N ≃ BN/B, then
N/A ∩N and N/B ∩N are torsion free. Thus A ∩N and B ∩N are isolated
in N by Lemma 2.5. Hence N is the required normal subgroup. □

Next we prove (iii)⇒(iv). This will be done in Lemma 4.7. First we shall
need the following three lemmas in Andreadakis, Raptis and Varsos [2].

Lemma 4.4 ([2, Lemma 1]). Let K be a free abelian group of finite rank, A,B
subgroups of K which are direct factors of K and φ : A → B an isomorphism.
Then there exists an automorphism θ ∈ AutK such that θ|A = φ.

Lemma 4.5 ([2, Lemma 2]). Let A,K be free abelian groups and θ1, θ2 : A → K
monomorphisms such that θ1|H = θ2|H for some subgroup H of finite index in
A. Then θ1 = θ2.

Lemma 4.6 ([2, Proposition 1]). Let K be a free abelian group of finite rank
r(K) = n. Let A,B be subgroups of K of finite index in K and φ : A → B an
isomorphism. Suppose that there exists a subgroup H ≤f K with H ≤ A ∩ B
and Hφ = H. Then there exists a free abelian group X with finite rank r(X) =
r(K) = n such that K is a subgroup of finite index in X and an automorphism
θ ∈ AutX such that θ|A = φ.

We now show (iii)⇒(iv).

Lemma 4.7. Let K be a free abelian group of finite rank. Let A,B be subgroups
of K and φ : A → B an isomorphism. Suppose that there exists N ◁f K such
that (A∩N)φ = B ∩N and A∩N , B ∩N are isolated in N . Then there exists
a free abelian group X with finite rank such that K is a subgroup of finite index
in X and an automorphism φ̄ ∈ AutX such that φ̄|A = φ.

Proof. Since A∩N,B ∩N are isolated in N , then N/A∩N and N/B ∩N are
torsion free by Lemma 2.5. ThusN/A∩N is free abelian and there exists L < N
such that N = (A ∩ N) × L. Similarly, N = (B ∩ N) ×M for some M < N .
Since (A ∩N)φ = B ∩N , then by Lemma 4.4, there exists an automorphism
τ of N with τ |A∩N = φ|A∩N .
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Next we put K = K, A = B = H = N with τ : N → N an isomorphism
in Lemma 4.6. Note that all the conditions of Lemma 4.6 are satisfied. Hence
there exists a free abelian group X with finite rank such that K ≤f X and
an automorphism φ̄ ∈ AutX such that φ̄|N = τ . Since φ̄ ∈ AutX, we have
φ̄|A : A → X. So there are two monomorphisms φ̄|A : A → X and φ : A −→ X
such that φ̄|A∩N = τ |A∩N = φ|A∩N for the subgroup A ∩ N ◁f A. Therefore
by Lemma 4.5, φ̄|A = φ and our result follows. □

Theorem 4.8 below follows from Theorem 3.4 but we shall provide an inde-
pendent proof using the fact that φ is an automorphism of K.

Lemma 4.8. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K is
a free abelian group of finite rank and A ∩B = 1. If φ is an automorphism of
K, then G is residually p-finite.

Proof. Since K is free abelian, then by Proposition 2.2 of Baumslag [3],
⋂
Kpn

= 1 for almost all primes p. Since K ̸= A, K ̸= B, then again by Proposition
2.2 of Baumslag [3], for a prime p, we have

⋂
AKpn

= A and
⋂

BKpn

= B
for all n ∈ N. Furthermore AKpn ∩ BKpn

= Kpn

since AKpn ∩ BKpn

=
(A ∩B)Kpn

= 1Kpn

= Kpn

.
Let 1 ̸= x ∈ G be a reduced element in G. We prove the lemma by con-

structing a residually p-finite image group Ḡ of G such that x̄ ̸= 1̄. Then there
exists P̄ ◁f Ḡ such that x̃ ̸= 1̃ in G̃ = Ḡ/P̄ . Let P be the preimage of P̄ in G.
Then P ◁f G such that x̄ ̸= 1̄ in Ḡ = G/P and we are done.

Case 1. ∥x∥ = 0, that is, x ∈ K. Since
⋂

Kpn

= 1, there exists r ∈ N
such that x /∈ Kpr

. Note that Kpr

is characteristic in K. Since φ is an
automorphism of K such that Aφ = B and Kpr

is characteristic in K, we have
(A ∩ Kpr

)φ = B ∩ Kpr

. This implies that φ induces an isomorphism from
Ā = AKpr

/Kpr

onto B̄ = BKpr

/Kpr

which we denote by φ̄. So we can form
the HNN extension Ḡ = ⟨t, K̄; t−1Āt = B̄, φ̄⟩, where K̄ = K/Kpr

. We now
proceed as in the proof of Case 1 in Theorem 3.4 and our result follows.

Case 2. ∥x∥ ≥ 1. The proof of this case is similar to the proof of Case 2 in
Theorem 3.4. □

We now show (iv)⇒(i).

Lemma 4.9. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where K is
a free abelian group of finite rank and A ∩B = 1. If there exists a free abelian
group X with finite rank such that K is a subgroup of finite index in X and an
automorphism φ̄ ∈ AutX such that φ̄|A = φ, then G is residually p-finite.

Proof. Let G∗ = ⟨t,X; t−1At = B,φ⟩. Now φ comes from the automorphism
φ̄ of X and hence by Theorem 4.8, G∗ is residually p-finite. Since G < G∗, G
is residually p-finite. □

Remark. Theorem 4.1 now follows from Lemmas 4.3, 4.7 and 4.8.
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Next we give another proof of Theorem 3.4 by using Theorem 4.1 and the
following theorem from Raptis & Varsos [17].

Theorem 4.10 ([17, Proposition 1]). Let K be a finitely generated abelian
group, A,B ≤ K and φ : A → B an isomorphism, let G = ⟨t,K; t−1At = B,φ⟩
be the corresponding HNN extension. If A ∩ B is finite, then G is residually
finite.

Remark. Another proof of Theorem 3.4:
Proof of Theorem 3.4. By Theorem 4.10, G is residually finite. The result now
follows from Theorem 4.1. □

Now suppose A ∩ B = 1 and A and B have finite indices in K. Then we
can show that G = ⟨t,K; t−1At = B,φ⟩ is residually p-finite if and only if G is
subgroup separable.

Corollary 4.11. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where
K is a free abelian group of finite rank. Suppose A∩B = 1 and A and B have
finite indices in K. Then G is residually p-finite if and only if G is subgroup
separable.

Proof. Suppose G is subgroup separable. Then G is residually finite and by
Theorem 4.1, G is residually p-finite.

Suppose G is residually p-finite. Then from Theorem 4.1, there exists a free
abelian group X of finite rank such that K is a subgroup of finite index in X
and an automorphism φ̄ ∈ AutX such that φ̄|A = φ. Hence by Theorem 1 of
Wong [23], G is subgroup separable. □

Corollary 4.12. Let G = ⟨t,K; t−1At = B,φ⟩ be an HNN extension, where
K is a free abelian group of finite rank. Suppose A∩B = 1 and A and B have
finite indices in K. Then G is residually p-finite and subgroup separable.

Proof. It follows from Theorem 3.4 and Corollary 4.11. □

5. Some applications

In this section we show first characterisations for certain one-relator groups
and similar groups, to be residually p-finite. Characterisations on the residual
finiteness of these groups by Raptis and Varsos in [17] and Andredakis, Raptis
and Varsos in [1] are used.

Theorem 5.1. Let G = ⟨t,K; t−1ut = w⟩ be an HNN extension, where K is a
free abelian group of finite rank and u,w ∈ K. Then G is residually p-finite if
and only if ⟨u⟩ ∩ ⟨w⟩ = 1 or there exists a primitive element s of K such that
u = w±1 = sr, where r ∈ Z.

Proof. The group G can be written as G = ⟨t,K; t−1At = B,φ⟩, where K is
a free abelian group of finite rank, A = ⟨u⟩, B = ⟨w⟩ and φ : A → B with
φ(u) = w is an isomorphism. If ⟨u⟩ ∩ ⟨w⟩ = 1, then A ∩ B = 1 and hence
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G is residually p-finite by Theorem 3.4. Suppose u = w±1 = sr, where s is
a primitive element of K. Then A = B and hence G is residually p-finite by
Theorem 3.5.

Suppose G is residually p-finite and ⟨u⟩ ∩ ⟨w⟩ ̸= 1. Since G is residually
finite and ⟨u⟩ and ⟨v⟩ are not finite, then by Proposition 2 of Raptis and
Varsos [17], there exists a primitive element s of K such that u = w±1 = sr,
where r ∈ Z. □

Theorem 5.2. Let G = ⟨t, a, b; t−1amt = anbk, [a, b]⟩, where m,n, k ∈ Z. Then
G is residually p-finite if and only if k ̸= 0 or m = |n|.

Proof. The group G can be written as an HNN extension G = ⟨t,K; t−1At =
B,φ⟩, where K = ⟨a, b⟩ is a free abelian group of rank 2, A = ⟨am⟩, B = ⟨anbk⟩
and φ : A → B with φ(am) = anbk is an isomorphism. If k ̸= 0, then
A ∩ B = ⟨am⟩ ∩ ⟨anbk⟩ = 1 and hence G is residually p-finite by Theorem
3.4. If k = 0 and m = |n|, then A = B and hence G is residually p-finite by
Theorem 3.5.

If k = 0 and m ̸= |n|, then G is not residually finite by Theorem 2 of
Andredakis, Raptis and Varsos [1]. □

Theorem 5.3. Let G=⟨t, a1, a2, . . . , an; t−1ahi
i t=aki

i , [ai, aj ], i, j=1, 2, . . . , n⟩,
where not all hi = 1 for i = 1, 2, . . . , n and not all kj = 1 for j = 1, 2, . . . , n.
Then G is residually p-finite if and only if |hi| = |ki|, i = 1, 2, . . . , n.

Proof. The group G can be written as an HNN extension G = ⟨t,K; t−1At =
B,φ⟩, where K = ⟨a1, a2, . . . , an; [ai, aj ]⟩ is a free abelian group of rank n, A =

⟨ah1
1 , ah2

2 , . . . , ahn
n ⟩, B = ⟨ak1

1 , ak2
2 , . . . , akn

n ⟩ and φ : A → B with φ(ahi
i ) = aki

i ,
i = 1, 2, . . . , n, is an isomorphism.

Suppose |hi| = |ki|, i = 1, 2, . . . , n. Then we have A = B and hence G is
residually p-finite by Theorem 3.5.

If |hi| ≠ |ki| for some i = 1, 2, . . . , n, then G is not residually finite by
Corollary 3 of Andredakis, Raptis and Varsos [1]. □

Remark. We note that if |hi| = |ki|, i = 1, 2, . . . , n, then G is subgroup separa-
ble by Corollary 2 of Wong [23].

A characterisation for the Baumslag-Solitar groups to be residually p-finite
is shown in the Main Theorem of Kim and McCarron [12]. We shall provide a
partial proof using Theorem 3.5.

Theorem 5.4. Let G = ⟨t, a | t−1art = as⟩, where r, s ∈ Z. Suppose the
following conditions (r = 1, s ≡ 1 (mod p)) and (s = 1, r ≡ 1 (mod p)) do
not occur. Then G is residually p-finite if and only if |r| = |s|.

Proof. The group G can be written as an HNN extension G = ⟨t,K; t−1At =
B,φ⟩, where K = ⟨a⟩ is infinite cyclic, A = ⟨ar⟩, B = ⟨as⟩ and φ : A → B
with ar → as is an isomorphism.



RESIDUAL p-FINITENESS 795

Suppose |r| = |s|. Then A = B and hence G is residually p-finite by Theorem
3.5.

If |r| ̸= |s|, then G is not residually p-finite by Main Theorem of Kim and
McCarron [12]. □
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