DOI QR코드

DOI QR Code

Atomic Force Microscopy (AFM) Tip based Nanoelectrode with Hydrogel Electrolyte and Application to Single-Nanoparticle Electrochemistry

  • Kyungsoon Park (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Thanh Duc Dinh (Department of Advanced Materials Chemistry, Korea University) ;
  • Seongpil Hwang (Department of Advanced Materials Chemistry, Korea University)
  • Received : 2023.10.23
  • Accepted : 2023.11.06
  • Published : 2024.05.31

Abstract

An unconventional fabrication technique of nanoelectrode was developed using atomic force microscopy (AFM) and hydrogel. Until now, the precise control of electroactive area down to a few nm2 has always been an obstacle, which limits the wide application of nanoelectrodes. Here, the nanometer-sized contact between the boron-doped diamond (BDD) as conductive AFM tip and the agarose hydrogel as solid electrolyte was well governed by the feedback amplitude of oscillation in the non-contact mode of AFM. Consequently, this low-cost and feasible approach gives rise to new possibilities for the fabrication of nanoelectrodes. The electroactive area controlled by the set point of AFM was investigated by cyclic voltammetry (CV) of the ferrocenmethanol (FcMeOH) combined with quasi-solid agarose hydrogel as an electrolyte. Single copper (Cu) nanoparticle was deposited at the apex of the AFM tip using this platform whose electrocatalytic activity for nitrate reduction was then investigated by CV and Field Emission-Scanning Electron Microscopy (FE-SEM), respectively.

Keywords

Acknowledgement

S. H. acknowledges the support from Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. RS-2023-00209181). This work was supported by a Korea University Grant. Also, K.P. acknowledges the support from Basic Science Research Program to Research Institute for Basic Sciences (RIBS) of Jeju National University through the National Research Foundation of Korea (NRF) funded by the Ministry of Education. (2019R1A6A1A10072987). This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1I1A3072996).

References

  1. F. Zhang, M. A. Edwards, R. Hao, H. S. White and B. Zhang, J. Phys. Chem. C, 2017, 121(42), 23564-23573. https://doi.org/10.1021/acs.jpcc.7b08492
  2. O. J. Wahab, M. Kang and P. R. Unwin, Curr. Opin. Electrochem., 2020, 22, 120-128. https://doi.org/10.1016/j.coelec.2020.04.018
  3. Q. Chen, L. Luo, H. Faraji, S. W. Feldberg, and H. S. White, J. Phys. Chem. Lett., 2014, 5(20), 3539-3544. https://doi.org/10.1021/jz501898r
  4. Y. Yu, Y. Gao, K. Hu, P.-Y. Blanchard, J.-M. Noel, T. Nareshkumar, K. L. Phani, G. Friedman, Y. Gogotsi, and M. V. Mirkin, ChemElectroChem, 2015, 2(1), 58-63. https://doi.org/10.1002/celc.201402312
  5. J. Clausmeyer, J. Masa, E. Ventosa, D. Ohl, and W. Schuhmann, Chem. Commun., 2016, 52, 2408-2411. https://doi.org/10.1039/C5CC08796A
  6. H. B. Aiyappa, P. Wilde, T. Quast, J. Masa, C. Andronescu, Y.-T. Chen, M. Muhler, R. A. Fischer, and W. Schuhmann, Angew. Chem. Int. Ed., 2019, 58(26), 8927-8931. https://doi.org/10.1002/anie.201903283
  7. S. E. Salamifar and R. Y. Lai, Anal. Chem., 2014, 86(6), 2849-2852. https://doi.org/10.1021/ac403816h
  8. D.-S. Kim, E.-S. Kang, S. Baek, S.-S. Choo, Y.-H. Chung, D. Lee, J. Min, and T.-H. Kim, Sci. Rep., 2018, 8, 14049.
  9. C. G. Zoski, Electroanalysis, 2002, 14(15-16), 1041-1051. https://doi.org/10.1002/1521-4109(200208)14:15/16<1041::AID-ELAN1041>3.0.CO;2-8
  10. D. W. M. Arrigan, Analyst, 2004, 129, 1157-1165. https://doi.org/10.1039/b415395m
  11. R. W. Murray, Chem. Rev., 2008, 108(7), 2688-2720. https://doi.org/10.1021/cr068077e
  12. X. Xiao, F.-R. F. Fan, J. Zhou, and A. J. Bard, J. Am. Chem. Soc., 2008, 130, 16669-16677. https://doi.org/10.1021/ja8051393
  13. W. Cheng and R. G. Compton, Trends Anal. Chem., 2014, 58, 79-89. https://doi.org/10.1016/j.trac.2014.01.008
  14. M. V. Mirkin, T. Sun, Y. Yu, and M. Zhou, Acc. Chem. Res., 2016, 49(10), 2328-2335. https://doi.org/10.1021/acs.accounts.6b00294
  15. W. Xu, G. Zou, H. Hou, and X. Ji, Small, 2019, 15(32), 1804908.
  16. S. M. Oja, D. A. Robinson, N. J. Vitti, M. A. Edwards, Y. Liu, H. S. White, and B. Zhang, J. Am. Chem. Soc., 2017, 139(2), 708-718 https://doi.org/10.1021/jacs.6b11143
  17. L. Sun, W. Wang, and H.-Y. Chen, ChemElectroChem, 2018, 5(20), 2995-2999. https://doi.org/10.1002/celc.201800640
  18. W. Wei, T. Yuan, W. Jiang, J. Gao, H.-Y. Chen, and W. Wang, J. Am. Chem. Soc., 2020, 142(33), 14307-14313. https://doi.org/10.1021/jacs.0c06171
  19. B. B. Katemann and W. Schuhmann, Electroanalysis, 2002, 14, 22-28. https://doi.org/10.1002/1521-4109(200201)14:1<22::AID-ELAN22>3.0.CO;2-F
  20. Y. Li, D. Bergman, and B. Zhang, Anal. Chem., 2009, 81(13), 5496-5502. https://doi.org/10.1021/ac900777n
  21. B. K. Jena, S. J. Percival, and B. Zhang, Anal. Chem., 2010, 82(15), 6737-6743. https://doi.org/10.1021/ac101261m
  22. N. Jalili and K. Laxminarayana, Mechatronics, 2004, 14(8), 907-945. https://doi.org/10.1016/j.mechatronics.2004.04.005
  23. W. Melitz, J. Shen, A. C. Kummel, and S. Lee, Surf. Sci. Rep., 2011, 66(1), 1-27. https://doi.org/10.1016/j.surfrep.2010.10.001
  24. S. Manne, P. K. Hansma, J. Massie, V. B. Elings, and A. A. Gewirth, Science, 1991, 251(4990), 183-186. https://doi.org/10.1126/science.251.4990.183
  25. J. V. Macpherson and P. R. Unwin, Anal. Chem., 2000, 72(2), 276-285. https://doi.org/10.1021/ac990921w
  26. A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, Angew. Chem. Int. Ed., 2003, 42(34), 3996-4028. https://doi.org/10.1002/anie.200200553
  27. C. Kranz, A. Kueng, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, Ultramicroscopy, 2004, 100(3-4), 127-134. https://doi.org/10.1016/j.ultramic.2003.10.004
  28. H. Kang, S. Hwang, and J. Kwak, Nanoscale, 2015, 7, 994-1001. https://doi.org/10.1039/C4NR06041E
  29. T. D. Dinh, K. Park, and S. Hwang, Anal. Chem., 2023, 95(30), 11181-11186.
  30. H. Kang and S. Hwang, Int. J. Electrochem. Sci., 2015, 10, 9706-9713. https://doi.org/10.1016/S1452-3981(23)11213-2
  31. S. E. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, Angew. Chem. Int. Ed., 2014, 53(14), 3558-3586. https://doi.org/10.1002/anie.201306828
  32. S. Chen and A. Kucernak, J. Phys. Chem. B, 2003, 107, 8392-8402. https://doi.org/10.1021/jp0348934
  33. S. Chen and A. Kucernak, Electrochem. Commun., 2002, 4(1), 80-85. https://doi.org/10.1016/S1388-2481(01)00278-8
  34. S. Hwang, Int. J. Electrochem. Sci., 2012, 7(3), 1820-1826. https://doi.org/10.1016/S1452-3981(23)13842-9
  35. Y. Wang, W. Zhou, R. Jia, Y. Yu, and B. Zhang, Angew. Chem. Int. Ed., 2020, 59(13), 5350-5354. https://doi.org/10.1002/anie.201915992
  36. Z. Mumtarin, M. M. Rahman, H. M. Marwani, and M. A. Hasnat, Electrochim. Acta, 2020, 346, 135994.
  37. T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang, and Y. Xu, Chem. Eng. J., 2021, 426, 130759.