DOI QR코드

DOI QR Code

Nonlinear regression methods and genetic algorithms for estimation of compression index of clays using toughness limit

  • Satoru Shimobe (College of Science and Technology, Nihon University) ;
  • Eyyub Karakan (Department of Civil Engineering, Kilis 7 Aralik University) ;
  • Alper Sezer (Department of Civil Engineering, Ege University)
  • Received : 2022.12.12
  • Accepted : 2024.04.30
  • Published : 2024.05.25

Abstract

Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.

Keywords

References

  1. Ahadiyan, J., Ebne, J.R. and Bajestan, M.S. (2008), "Prediction determination of soil compression index, Cc. Ahwaz Region", J. Fac. Eng., 35(3), 75-80.
  2. Alam, S., Khuntia, S. and Patra, C. (2014), "Prediction of compression index of clay using artificial neural network", Proceedings of Industrial Engineering Science and Applications, NIT Durgapur, India, April 2.
  3. Alavi, A. and Gandomi, A. (2011), "A robust data mining approach for formulation of geotechnical engineering systems", Eng. Comput., 28(3), 242-274. https://doi.org/10.1108/02644401111118132.
  4. Al-Khafaji, A.N. (1993), "Estimation of soil compaction parameters by means of Atterberg limits", Q. J. Eng. Geol. Hydroge., 26, 359-368. https://doi.org/10.1144/GSL.QJEGH.1993.026.004.10.
  5. Al-Khafaji, A.W.N. and Andersland, O.B. (1992), "Equations for compression index approximation", J. Geotech. Eng. - ASCE, 118(1), 148-153. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(148).
  6. Alkroosh, I., Alzabeebee, S. and Al-Taie, A.J. (2020), "Evaluation of the accuracy of commonly used empirical correlations in predicting the compression index of Iraqi fine-grained soils", Innov. Infrastruct. Solu., 5(3), 1-10. https://doi.org/10.1007/s41062-020-00321-y.
  7. Alzabeebee, S., Alshkane, Y.M. and Rashed, K.A. (2021), "Evolutionary computing of the compression index of fine-grained soils", Arabian J. Geosci., 14(19), 1-17. https://doi.org/10.1007/s12517-021-08319-1.
  8. Anik, K.A.A. (2019), Shear strength and compressibility characteristics of reconstituted clays, Bangladesh University of Engineering and Technology, M.Sc. Thesis, 90 pages.
  9. Ara, S., Uddin, M.S. and Showkat, N.H. (2021), "Correlation of compression index with index properties of soil samples from several places in Chattogram, Bangladesh", Int. Res. J. Eng. Tech., 8(2), Feb 2021
  10. Azzouz, A.S., Krizek, R.J. and Corotis, R.B. (1976), "Regression analysis of soil compressibility", Soils Found., 16(2), 19-29. https://doi.org/10.3208/sandf1972.16.2_19.
  11. Barnes, G.E. (2013), "An apparatus for the determination of the workability and plastic limit of clays", Appl. Clay Sci., 80-81, 281-290. https://doi.org/10.1016/j.clay.2013.04.014.
  12. Benbouras, M.A., Mitiche, B.R., Zedira, H., Petrisor, A.I., Mezouar, N. and Debiche, F. (2019), "A new approach to predict the compression index using artificial intelligence methods", Mar. Georesour. Geotech., 37(6), 704-720. https://doi.org/10.1080/1064119X.2018.1484533.
  13. Biarez, J. and Favre, J.L. (1975), "Parameters filing and statistical analysis of data in soil mechanics", Proceedings of the 2 nd Int. conf. on Applications of Statistics and Probability in Soil and Structural Engineering, Aachen, Germany.
  14. Boone, S.J. (2010), "A critical reappraisal of "preconsolidation pressure" interpretations using the oedometer test", Can. Geotech. J., 47(3), 281-296. https://doi.org/10.1139/T09-093.
  15. Bowles, J.E. (1979), Physical and geotechnical properties of soils. McGraw-Hill, New Jersey.
  16. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329.
  17. Cabalar, A.F., Cevik, A. and Guzelbey, I.H. (2009), "Constitutive modeling of Leighton Buzzard sands using genetic programming", Neural Comput. Appl., 19, 657-665. https://doi.org/10.1007/s00521-009-0317-4.
  18. Cai, G., Liu, S., Puppala, A.J. and Tong, L. (2015), "Identification of soil strata based on general regression neural network model from CPTU data", Mar. Georesour. Geotech., 33(3), 229-238. https://doi.org/10.1080/1064119X.2013.843046.
  19. Cerato, A.B. and Lutenegger, A.J. (2004), "Determining intrinsic compressibility of fine-grained soils", J. Geotech. Geoenviron. Eng., 130(8), 872-877. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(872).
  20. Cherubini, C. (1991), "Compressibility characteristics of the Matera Blue Clays as determined by means of statistical correlations", Proceedings of the 10th European Conf on Soil Mechanics and Foundation Engineering (AGI), Firenze.
  21. Cherubini, C. and Giasi, C.I. (2000), "Correlation equations for normal consolidated clays", (Eds., Yokohama, I.S., Nakase, A. and Tsuchida, T.), Proceedings of the Int Symp on Coastal Geotechnical Engineering in Practice, AA Balkema, Rotterdam.
  22. Cherubini, C., Paccapelo, F. and Ramunni, F.P. (2001), "Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties: Discussion", Can. Geotech. J., 38(5), 1152-1153. https://doi.org/10.1139/t01-038.
  23. Cui, L. and Sheng, D. (2005), "Genetic algorithms in probabilistic finite element analysis of geotechnical problems", Comput. Geotech., 32(8), 555-563. https://doi.org/10.1016/j.compgeo.2005.11.005.
  24. Dagdeviren, U., Demir, A.S. and Kurnaz, T.F. (2018), "Evaluation of the compressibility parameters of soils using soft computing methods", Soil Mech. Found. Eng., 55(3), 173-180. https://doi.org/10.1007/s11204-018-9522-4.
  25. Deb, K. (1999), "Evolutionary algorithms for multi-criterion optimization in engineering design", Proceedings of Evolutionary Algorithms in Engineering and Computer Science, (EUROGEN'99).
  26. Dey, S. and Chattopadhay, B.C. (2021a), "Compression index of cohesive soils and its prediction", Int. J. Inn. Res. Techn., 7(9), 273-280.
  27. Dey, S. and Chattopadhay, B.C. (2021b), "New correlation of compression index from consistency index of cohesive soils", Int. J. Inn. Res. Techn., 7(11), 462-469.
  28. Du, Y.J., Fan, R.D., Liu, S.Y., Liu, Z.B., Wang, F. and Yu, C. (2017), "Effect of lead contamination on compression index and hydraulic conductivity of clayey soil-bentonite backfills for slurry-trench cutoff walls", Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Seoul.
  29. Fakharian, K. and Mehdizadeh, A. (2015), "Investigation of field instrumentation in a preloading project", Proc. Inst. Civil Eng. Geotech. Eng., 168(1), 87-98. https://doi.org/10.1680/geng.13.00018.
  30. Farias, M.M. and Llano-Serna, M.A. (2016), "Simple methodology to obtain critical state parameters of remolded clays under normally consolidated conditions using the fall-cone test", Geotech. Test. J., 39(5), 1-10. https://doi.org/10.1520/GTJ20150207.
  31. Gandomi, A.H. and Alavi, A.H. (2013), "Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction", Int. J. Earthq. Eng. Haz. Mit., 1, 2-8. https://doi.org/10.15866/irehm.v1i1.958.
  32. Gao, Y.B., Zhang, S.B. and Ge, X.N. (2017), "Comparisons of compression index of Chinese coastal soft clay and soils from foreign regions", Rock Soil Mech., 38(9), 2713-2720 (in Chinese). https://doi.org/10.16285/j.rsm.2017.09.032.
  33. Garg, A., Garg, A., Tai, K. and Sreedeep, S. (2014a), "Estimation of pore water pressure of soil using genetic programming", Geotech. Geol. Eng., 32, 765-772. https://doi.org/10.1007/s10706-014-9755-6.
  34. Giasi, C.I., Cherubini, C. and Paccapelo, F. (2003), "Evaluation of compression index of remoulded clays by means of Atterberg limits", Bull. Eng. Geol. Environ., 62, 333-340. https://doi.org/10.1007/s10064-003-0196-3.
  35. Goldberg, D.E. (1989), "Genetic algorithms in search optimization, and machine learning", Mach Learn., 3, 95-99. https://doi.org/10.1023/A:1022602019183
  36. Gregory, A.S., Whalley, W.R., Watts, C.W., Bird, N.R.A., Hallett, P.D. and Whitmore, A.P. (2006), "Calculation of the compression index and precompression stress from soil compression test data", Soil Till. Res., 89(1), 45-57. https://doi.org/10.1016/j.still.2005.06.012.
  37. Gunduz, Z. and Arman, H. (2007), "Possible relationships between compression and recompression indices of a low-plasticity clayey soil", Arab. J. Sci. Eng., 32(2), 179-190.
  38. Habibbeygi, F., Nikraz, H. and Verheyde, F. (2017), "Determination of the compression index of reconstituted clays using intrinsic concept and normalized void ratio", Int. J. Geomate, 13(39), 54-60. https://doi.org/10.21660/2017.39.98271.
  39. Hameedi, M.K., Al Omari, R.R. and Fattah, M.Y. (2020), "Compression and creep indices of organic clayey soil", Proceedings of the IOP Conference Series: Materials Science and Engineering, 671, 012035. https://doi.org/10.1088/1757-899X/671/1/012035.
  40. Hashemi Jokar, M., Mirasi, S. and Rahnema, H. (2017), "Determination of clayey soil compression index (Cc) using adaptive neuro-fuzzy inference system", Modares Civil Eng. J., 17(4), 277-287.
  41. He, Z., Nguyen, H., Vu, T.H., Zhou, J., Asteris, P.G. and Mammou, A. (2022), "Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm-and evolution-based algorithms", Acta Geotech., 17(4), 1257-1272. https://doi.org/10.1007/s11440-021-01358-8
  42. Holland, J. (1975), Adaptation in natural and artificial systems, Ann Arbor: University of Michigan Press.
  43. Hong, S.W. and Im, J.C. (2012), "Nonlinear compression characteristics of highly plastic clays and silts of Korea South Coast", J. Navi. Port Res., 36(3), 181-187. https://doi.org/10.5394/KINPR.2012.36.3.181.
  44. Hong, S.J., Kim, D.H., Lee, M.J., Jie, H.K. and Lee, W.J. (2013), "Evaluation of compression index for natural clay using the compression characteristic of reconstituted clay", J. Korean Geotech. Soc., 29(3), 5-13. https://doi.org/10.7843/kgs.2013.29.3.5.
  45. Hough, B.K. (1957), Basic soils engineering. 1st Ed., The Ronald Press Company, New York, USA.
  46. Ishida, T., Tatsui, T., Nakagawa, Y., Taninaka, H. and Hidano, M. (2011), An Introduction to Laboratory Testing and Field Investigation for Geomaterials. Index-Press, Tokyo, Japan (in Japanese).
  47. Isik, N.S. (2009), "Estimation of swell index of fine grained soils using regression equations and artificial neural networks", Sci. Res. Essays, 4(10), 1047-1056.
  48. Islam, M.S. and Rokonuzzaman, M. (2018), "Optimized design of foundations: an application of genetic algorithms", Aus. J. Civil Eng., 16(1), 46-52. https://doi.org/10.1080/14488353.2018.1445437.
  49. Jiang, N., Wang, C., Wu, Q. and Li, S. (2020), "Influence of structure and liquid limit on the secondary compressibility of soft soils", J. Mar. Sci. Eng., 8(9), 627. https://doi.org/10.1080/14488353.2018.1445437.
  50. Jimenez, O.J., Prieto, L.F. and Pacheco, E.J. (2019), "Analysis of behavior of soil compressibility of the lacustre deposit of Tunja, Colombia", J. Phys.: Conference Series, 1386(1), 012054. https://doi.org/10.1088/1742-6596/1386/1/012054.
  51. Jin, Y.F. and Yin, Z.Y. (2020), "An intelligent multi-objective EPR technique with multi-step model selection for correlations of soil properties", Acta Geotech., 15(8), 2053-2073. https://doi.org/10.1007/s11440-020-00929-5.
  52. Kalantary, F. and Kordnaeij, A. (2012), "Prediction of compression index using artificial neural network", Sci. Res. Ess., 7, 2835-2848. https://doi.org/10.5897/SRE12.297.
  53. Keshanchi, B., Souri, A. and Navimipour, N.J. (2017), "An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing", J. Syst. Software., 124, 1-21. https://doi.org/10.1016/j.jss.2016.07.006.
  54. Klai, M. and Bouassida, M. (2016), "Study of the behavior of Tunis soft clay", Innov. Infrastruct. Solu., 1(31). https://doi.org/10.1007/s41062-016-0031-x.
  55. Koppula, S.D. (1981), "Statistical estimation of compression index", Geotech. Test. J., 4(2), 68-73. https://trid.trb.org/view/174754. https://doi.org/10.1520/GTJ10768J
  56. Kulhawy, F.H. Mayne, P.W. (1990), Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA). Geotechnical Engineering Group.
  57. Kumar, V.P. and Rani, C.S. (2011), "Prediction of compression index of soils using artificial neural networks (ANNs)", Int. J. Eng. Res. Appl., 1(4), 1554-1558.
  58. Kumar, R., Jain, P.K. and Dwivedi, P. (2016), "Prediction of compression index (Cc) of fine-grained remolded soils from basic soil properties", Int. J. Appl. Eng. Res., 11(1), 592-598.
  59. Kurnaz, T.F., Dagdeviren, U., Yildiz, M. and Ozkan, O. (2016), "Prediction of compressibility parameters of the soils using artificial neural network", SpringerPlus, 5(1), 1801. https://doi.org/10.1186/s40064-016-3494-5.
  60. LCPC (1973), Remblais sur Sols compressibles. Bull Des Laboratoires Des Ponts Et Chaussees Special T 58:361p.
  61. Levasseur, S., Malecot, Y., Boulon, M. and Flavigny, E. (2007), "Soil parameter identification using a genetic algorithm", Int. J. Numer. Anal. Meth. Geomech. 32(2), 189-213. https://doi.org/10.1002/nag.614.
  62. Levasseur, S., Malecot, Y., Boulon, M. and Flavigny, E. (2009), "Statistical inverse analysis based on genetic algorithm and principal component analysis: Method and developments using synthetic data", Int. J. Numer. Anal. Meth. Geomech., 33(12), 1485-511. https://doi.org/10.1002/nag.776.
  63. Liu, S.Y., Shao, G.H., Du, Y.J. and Cai, G.J. (2011), "Depositional and geotechnical properties of marine clays in Lianyungang", China. Eng. Geol., 121(1-2), 66-74. https://doi.org/10.1016/j.enggeo.2011.04.014.
  64. Liu, P., Chen, R.P., Wu, K. and Kang, X. (2020), "Effects of drying-wetting cycles on the mechanical behavior of reconstituted granite-residual soils", J. Mat. Civil Eng., 32(8), 04020199: 1-11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003272.
  65. Mayne, P.W. (1980), "Cam-clay predications of undrained strength", J. Geotech. Eng. Div., 106(11), 1219-1242. https://doi.org/10.1061/AJGEB6.0001060.
  66. Mandhour, E.A. (2020), "Prediction of compression index of the soil of Al-Nasiriya city using simple linear regression model", Geotech. Geol. Eng., 38(5), 4969-4980. https://doi.org/10.1007/s10706-020-01339-w.
  67. Mitachi, T. and Ono, T. (1985), "Prediction of undrained shear strength of overconsolidated clay", Tsuchi-to-Kiso, 33(3), 21-28 (in Japanese).
  68. Mohammadzadeh, D., Bazaz, J.B. and Alavi, A.H. (2014), "An evolutionary computational approach for formulation of compression index of fine-grained soils", Eng. Appl. Art. Int., 33, 58-68. https://doi.org/10.1016/j.engappai.2014.03.012.
  69. Mohammadzadeh S,D., Bolouri Bazaz, J., Vafaee Jani Yazd, S.H. and Alavi, A.H. (2016), "Deriving an intelligent model for soil compression index utilizing multi-gene genetic programming", Environ. Earth Sci., 75(3), 1-11. https://doi.org/10.1007/s12665-015-4889-2.
  70. Mohammed, S., Dirate, D.D., Dasho, D.K., Verma, R.K., Pampana, V.R., Sangalang, R.B., Koshuma, A.E. and Ayalew, A.T. (2022), "An inclusive study on the effect of strain rate on the stress-strain behavior and the undrained shear strength of clay soils in Kombolcha", Ethiopia. Eng. Tech. Appl Sci. Res., 12(1), 8107-8113. https://doi.org/10.1007/s12665-015-4889-2.
  71. Nagaraj, T.S. and Miura, N. (2001), Soft clay behaviour analysis and assessment. CRC Press.
  72. Nam, B.H., Shamet, R., Kim, Y.J., Xanthopoulos, P. and Panagopoulos, O. (2019), Development of statistical models to predict the compressibility of Florida's soils, Final Report FDOT Contract No.: BDV24-977-24, Florida Department of Transportation, 119p.
  73. Nakase, A., Kamei, T. and Kusakabe, O. (1988), "Constitutive parameters estimated by plasticity index", J. Geotech. Eng., 114(7), 844-858. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:7(844).
  74. Nishida, Y. (1956), "A brief note on compression index of soil", ASCE J. Soil Mech. Found. Div., 82(3), 1-14. https://doi.org/10.1061/JSFEAQ.0000015.
  75. Ogawa, F. and Matsumoto, K. (1978), "Correlation of the mechanical and index properties of soils in Harbor districts", Report of Port and Harbor Research Institute, 17(3), 1-89 (in Japanese).
  76. Olchawa, A. and Kumor, M. (2007), "Compressibility of organic soils polluted with diesel oil", Archv. Hyd.-Eng. Env. Mech., 54(4), 299-307.
  77. Onyejekwe, S., Kang, X. and Ge, L. (2015), "Assessment of empirical equations for the compression index of fine-grained soils in Missouri", Bull. Eng. Geol. Environ., 74(3), 705-716. https://doi.org/10.1007/s10064-014-0659-8.
  78. Onyejekwe, S., Kang, X. and Ge, L. (2016), "Evaluation of the scale of fluctuation of geotechnical parameters by autocorrelation function and semivariogram function", Eng. Geol., 214, 43-49. https://doi.org/10.1016/j.enggeo.2016.09.014.
  79. Ortigao, J.A.R. (2020), Soil mechanics in the light of critical state theories: an introduction. CRC Press.
  80. Park, J.H. and Koumoto, T. (2004), "New compression index equation", J. Geotech. Geoenviron. Eng., 130(2), 223-226. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(223)
  81. Park, H.I. and Cho, C.W. (2010), "Neural network model for predicting the resistance of driven piles", Mar. Georesour. Geotec., 28 (4), 324-344. https://doi.org/10.1080/1064119X.2010.514232.
  82. Park, H.I. and Lee, S.R. (2011), "Evaluation of the compression index of soils using an artificial neural network", Comput. Geotech., 38(4), 472-481. https://doi.org/10.1016/j.compgeo.2011.02.011.
  83. Rendon-Herrero, O. (1983), "Closure to "Universal compression index equation" by Oswald Rendon-Herrero (November, 1980)", J. Geotech. Geoenviron. Eng., 109(5), 755-761. https://doi.org/10.1016/j.compgeo.2011.02.011.
  84. Sankaran A. and Jangareddy, M. (2010), "Slope stability modeling using genetic programming", Int. J. Earth Sci. Eng., 3, 1-8.
  85. Sengupta, D.P. (1974), "Forecasting of compression index", Indian Geotech. J., 4(3), 256-263.
  86. Shahin, M.A., Jaksa, M.B. and Maier, H.R. (2009), "Recent advances and future challenges for artificial neural systems in geotechnical engineering applications", Adv. Art. Neural Syst., 1-9. https://doi.org/10.1155/2009/308239.
  87. Shahin, M.A. (2015), "Genetic programming for modelling of geotechnical engineering systems. in handbook of genetic programming applications", (Ed., Gandomi, A.H., Alavi, A.H. and Ryan, C.), 37-57. Cham: Springer.
  88. Sharma, B. and Bora, P.K. (2015), "A study on correlation between liquid limit, plastic limit and consolidation properties of soils", Indian Geotech. J., 45(2), 225-230. https://doi.org/10.1007/s40098-014-0128-0.
  89. Shimobe, S., Karakan, E. and Sezer, A. (2023a), "Use of toughness limit for assessment of soil compaction identifiers", Gradevinar, 75(8), 785-801. https://doi.org/10.14256/JCE.3663.2022.
  90. Shimobe, S., Karakan, E. and Sezer, A. (2023b), "Evaluation of dependency of compression index on toughness limit for fine-grained soils", Neural Comput. Appl., 35, 11183-11205. https://doi.org/10.1007/s00521-023-08292-8.
  91. Simpson, D.C. and Evans, T.M. (2016), "Behavioral thresholds in mixtures of sand and kaolinite clay", J Geotech. Geoenviron. Eng., 142, Article No. 04015073 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001391.
  92. Singh, A. and Noor, S. (2012), "Soil compression index prediction model for fine grained soils", Int. J. Innov. Eng. Tech., 1(4), 34-37.
  93. Skempton, A.W. and Jones, O.T. (1944), "Notes on the compressibility of clays", Q. J. Geol. Soc. London, 100, 119-135. https://doi.org/10.1144/GSL.JGS.1944.100.01-04.08.
  94. Sowers, G.B. (1970), Introductory soil mechanics and foundations, 3rd Ed., The Macmillan Company, Collier-Macmillan Limited, London, England.
  95. Sridharan, A. and Nagaraj, H.B. (2000), "Compressibility behaviour of remoulded, fine-grained soils and correlation with index properties", Can. Geotech. J., 37(3), 712-722. https://doi.org/10.1139/t99-128.
  96. Sun, L. (2021), "Strain accumulation in soft marine clay due to one-way cyclic load with variable confining pressure", Adv. Civil Eng., 2021, 13p. https://doi.org/10.1155/2021/6624270.
  97. Tang, A.M., Cui, Y.J., Eslami, J. and Defossez, P. (2009), "Analysing the form of the confined uniaxial compression curve of various soils", Geoderma, 148(3-4), 282-290. https://doi.org/10.1016/j.geoderma.2008.10.012.
  98. Terzaghi, K. and Peck, R.B. (1967), Soil Mechanics in Engineering Practice. 2nd Ed., John Wiley, London.
  99. Tiwari, B. and Ajmera, B. (2012), "New correlation equations for compression index of remolded clays", J. Geotech. Geoenvron. Eng., 138(6), 757-762. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000639.
  100. Tsuchida, T. (1999), "Unified model of e-log p relationship of clay and the interpretation of natural water content of marine deposits", (Eds., Tsuchida, T. and Nakase, I.S.), Proceedings of the Int Symp on Characterization of Soft Marine Clays, AA Balkema, Rotterdam.
  101. Vinod, P. and Bindu, J. (2010), "Compression index of highly plastic clays - an empirical correlation", Ind. Geotech. J., 40(3), 174-180.
  102. Vinod, P.P. and Pillai, G.A. (2017), "Toughness limit: a useful index property for prediction of compaction parameters of fine grained soils at any rational compactive effort", Indian Geotech. J., 47, 107-114. http://dx.doi.org/10.1007/s40098-016-0194-6.
  103. Widodo, S. and Ibrahim, A. (2012), "Estimation of primary compression index (Cc) using physical properties of Pontianak", Soft Clay. Int. J. Eng. Res. Appl., 2(5), 2231-2235.
  104. Wood, D.M. (1990), Soil behaviour and critical state soil mechanics, Cambridge University Press.
  105. Yin, J. and Miao, Y. (2013), "Intrinsic compression behavior of remolded and reconstituted clays-reappraisal", Open J. Civ. Eng., 3(3), 8-12. https://doi.org/10.4236/ojce.2013.33B002.
  106. Zaman, M.W., Hossain, M.R., Shahin, H. and Alam, A.A. (2015), "A study on correlation between consolidation properties of soil with liquid limit, in situ water content, void ratio and plasticity index", Geotech. Sustain.Infrastruct. Development, 899-902. https://doi.org/10.1139/cgj-2014-0172.
  107. Zeng, L.L., Hong, Z.S. and Cui, Y.J. (2015), "Determining the virgin compression lines of reconstituted clays at different initial water contents", Can. Geotech. J., 52(9), 1408-1415. https://doi.org/10.1139/cgj-2014-0172.